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Abstract

The discovery of microRNA (miRNA)–miRNA crosstalk has greatly improved our understanding of complex gene regulatory
networks in normal and disease-specific physiological conditions. Numerous approaches have been proposed for modeling
miRNA–miRNA networks based on genomic sequences, miRNA–mRNA regulation, functional information and phenomics
alone, or by integrating heterogeneous data. In addition, it is expected that miRNA–miRNA crosstalk can be reprogrammed
in different tissues or specific diseases. Thus, transcriptome data have also been integrated to construct context-specific
miRNA–miRNA networks. In this review, we summarize the state-of-the-art miRNA–miRNA network modeling methods,
which range from genomics to phenomics, where we focus on the need to integrate heterogeneous types of omics data.
Finally, we suggest future directions for studies of crosstalk of noncoding RNAs. This comprehensive summarization and
discussion elucidated in this work provide constructive insights into miRNA–miRNA crosstalk.
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Introduction

A major surprise since the completion of the human genome is
that a significant fraction of the human genome is transcribed
as noncoding RNAs (ncRNA), primarily the well-characterized
microRNAs (miRNAs) [1–3]. MiRNAs are a kind of single-
stranded small RNA molecules comprising approximately 22
nucleotides. Most of the functions of miRNAs are unknown, but
the characterized examples of miRNAs demonstrate their wide-
spread participation in biological functions [4, 5]. Increasing evi-
dence suggests that miRNAs play key roles in the life cycle of
the cell, where their dysfunction can lead to various diseases,
including cancers [6].miRNAs are recognized most for their roles
as regulators of specific target RNA molecules by forming
miRNA-induced silencing complexes, thereby resulting in RNA
degradation or hindering of mRNA translation into functional
proteins. Bioinformatics analyses estimate that miRNAs regu-
late >60% of the protein-coding genes [7–9]. In general, one
miRNA can target more than one gene, thereby indicating the
function complexity of miRNAs, and one gene can also be regu-
lated by more than one miRNA, which indicates cooperative
control. At present, miRNA cooperation is widely accepted and

many cooperative pairs of miRNAs have been detected. For ex-
ample, in Caenorhabditis elegans, both lin-4 and let-7 were first
discovered as key regulators of lin-41, where they control the
developmental timing of early larval developmental transitions
[10]. Genetic evidence also suggests that the lin-28 gene is co-
operatively regulated by the lin-4 miRNA and another unidenti-
fied miRNA [11]. After analyzing the human miRNA target
interactions predicted using the miRanda program, Bino et al.
found that regulation of one mRNA by one miRNA is rare, which
the early examples (lin-4 and let-7) seem to support [12]. They
also confirmed the existence of a human analog of the let-7/
miR-125 relationship predicted in C. elegans. In addition, the dis-
tribution of the predicted targets reflects more complicated
combinations, in terms of both target multiplicity (more than
one target per miRNA) and signal integration (more than one
miRNA per target gene). Studies have increasingly shown that
some miRNAs can participate in the same biological pathways
either as effectors or regulators [12–14]. For example, Krek et al.
showed that for the known targets of miR-375, a combination of
miR-124 and let-7b can lead to synergistic target inhibition in
mammals [13]. Similarly, the expression of miR-16, miR-34a and
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miR-106b can alter the cell cycle. Combining these miRNAs
leads to stronger cell cycle arrest compared with each of the
miRNAs alone [10]. In addition, miRNA target analysis has
shown that both miR-17-5p and miR-17-3p repress TIMP3 ex-
pression and induce prostate tumor growth and invasion [15].
The synergistic effects of miR-21 and miR-1 were also function-
ally validated in terms of their significant influences on myocar-
dial apoptosis, cardiac hypertrophy and fibrosis [16]. Wang et al.
demonstrated that entinostat can specifically induce the ex-
pression of three miRNAs (miR-125a, miR-125b and miR-205),
which act together to downregulate erbB2/erbB3 in breast can-
cer cells [17, 18]. Another study showed that six miRNAs signifi-
cantly inhibited cell proliferation in a cooperative manner [19].
Moreover, recent results obtained using cross-linking and
immunoprecipitation technologies confirmed the combinatorial
nature of miRNA regulation. Therefore, studying the cooperativ-
ity of miRNAs can greatly improve our understanding of the
contribution of co-regulating miRNAs toward the complex inter-
play between miRNAs.

In addition to identifying miRNAs that are expressed dy-
namically during development or dysregulated in complex dis-
eases, a growing number of studies have suggested an
intriguing hypothesis, where complex diseases are affected by
several miRNAs rather than a single miRNA. Studies of miRNAs
in cancers have shown that some miRNAs that are up-regulated
in tumors can act as oncogenes (oncomiRs), whereas miRNAs
that are down-regulated in cancer can act as tumor suppressors
[20–22]. Interestingly, Wu et al. found that 28 miRNAs from dif-
ferent miRNA clusters or families could substantially inhibit
p21Cip1/Waf1 expression, thereby signaling a new era of
miRNA research by focusing on networks more than the indi-
vidual connections between miRNAs and strongly predicted tar-
gets [23]. According to Peter [24], the study by Wu et al.
represents the first defined example where multiple miRNAs
target the same gene. Another example is the regulation of the
tumor suppressor FUS1 in cancer cells [25], which depends on
the presence of at least three miRNAs (miR-93, miR-98, miR-197
and additional unidentified miRNAs). Adam et al. also identified
three miRNAs, i.e. miR-21, miR-23a and miR-27a, which act as
cooperative repressors of three well-known suppressor genes
[26], where the level of inhibition was greater than that of inhib-
ition by miR-21 alone. Moreover, high levels of the three
miRNAs combined were associated with shorter survival times
after surgical resection. In 2015, Chen et al. discovered that miR-
142-3p, miR-494-3p and miR-BART20-5p regulate a molecular
circuit involving T-bet, PTEN, AKT and RICTOR, which is
involved in the pathogenesis of nasal natural killer cell lymph-
oma. Moreover, antagomirs to miR-BART20-5p or miR-494-3p,
miR-142-3p mimics or AKT inhibitors may be useful in therapy
[27]. These findings indicate that miRNAs act together to pro-
mote tumor progression, and thus therapeutic strategies might
require the inhibition of several miRNAs.

The cooperative integration of signals for target genes is a
key feature of miRNA regulation. miRNA–miRNA crosstalk is
common in all species, and studying the potential functional ef-
fects of this type of regulation is an interesting and challenging
area of miRNA research. However, the application of experi-
mental methods to infer miRNA cooperation must address
many bottlenecks, such as lengthy experimental periods, the re-
quirement for large amounts of equipment and a high number
of miRNA combinations. By June 2016, investigators had dis-
covered and documented 2813 miRNA entries in the miRBase
database, with 3 955 078 potential miRNA combinations. The
crosstalk among the miRNAs still needs to be tested, but

studying the modular regulation of miRNAs and investigating
their combined effects are important steps for elucidating the
functions of miRNAs at a system-wide level. The use of compu-
tational methods to supplement experimental approaches can
dramatically reduce the number of candidate miRNA combin-
ations. Thus, in this review, we discuss the computational
methods that have been proposed for inferring miRNA crosstalk
in genomic sequence-based prediction, or sequencing-based
analyses of miRNA–target interactions, as well as describing re-
cent efforts to integrate several data sources for inferring
miRNA crosstalk. Moreover, we present methods that have
been introduced for identifying context-specific miRNA func-
tional pairs, such as developmental stage-specific and disease-
specific methods. Finally, we will discuss the advantages and
disadvantages of the proposed approaches, as well as highlight-
ing remaining challenges and future improvements, and re-
search directions for ncRNA crosstalk detection.

Global computational methods for studying
crosstalk among miRNAs: from genomics to
phenomics

A number of computational methods have been proposed for
identifying the crosstalk among miRNAs, which range from
those based on genomic sequence to phenomics. In this section,
we discuss several representative global computation methods
(Table 1). We consider that global crosstalk among miRNAs rep-
resents generalized miRNA relationships without reference to
any particular condition(s).

miRNA crosstalk based on genomic similarity

miRNAs regulate mRNAs to facilitate cleavage or translational
repression via the complementary binding of a ‘seed sequence’
where they typically target in the 30 un-translated region (UTR)
of mRNAs. In addition, different miRNA sequences from the
same genomic region can bind to each other in a complemen-
tary manner (Figure 1A) to affect the transcription of each other.
This interesting phenomenon is common in human miRNAs.
Guo et al. showed that miRNA–miRNA complementary match-
ing pairs can be detected in different species, and some miRNAs
pairs are conserved across species [28]. In addition, Xu et al.
demonstrated that functional synergetic miRNA pairs exhibit
high seed sequence similarity [29]. Thus, we may obtain a global
view of miRNA crosstalk by analysis of the similarity of seed se-
quences among miRNAs.

Moreover, mammalian genomes are known to be organized
in an intensive manner into a higher-order conformation inside
the micron-sized nuclear space. Chromosome Conformation
Capture (3C) and similar techniques have demonstrated that
chromatin interactions must have roles in the mechanisms of
transcriptional regulation and coordination. In addition, our
knowledge of the role of higher-order chromatin structures dur-
ing the transcription of miRNA is evolving rapidly (Figure 1B).
Chen et al. investigated the effects of three-dimensional (3D)
architecture of chromatin on the transcriptional regulation of
miRNAs [30]. They also demonstrated the existence of spatial
miRNA–miRNA chromatin interacting networks by assembling
miRNA pairs that interact with each other at the chromatin
level, and showed that groups of spatially coordinated miRNAs
frequently come from the same family and they are involved
with the same disease category. Recently, Ma et al. described a
method for comprehensively mapping global chromatin
contacts called DNase Hi-C. They applied targeted DNase
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Hi-C to characterize the 3D organization of 998 ncRNA pro-
moters in two human cell lines and, showed that the expression
of ncRNAs is tightly controlled by complex mechanisms involv-
ing both super-enhancers and the Polycomb repressive complex
[31]. To store the chromatin interaction data obtained by com-
prehensive literature curation, the 4DGenome database was
proposed to store both low- and high-throughput assays,
including 3C, 4C-Seq, 5C, Hi-C, ChIA-PET and Capture-C data
sets [32]. These chromatin data sets provide valuable resources
for investigating the crosstalk among ncRNAs, including
miRNAs, at the chromatin level.

miRNA crosstalk based on regulatory omics

miRNAs function though their regulated target genes and many
miRNA target identification methods have been proposed,
which were reviewed by Fan et al. [33]. A simple method for de-
tecting cooperation between miRNAs is identifying miRNA pairs
that co-regulate at least one target. In particular, some studies
have attempted to identify miRNA pairs that co-occur in a large
set of shared targets compared with the number expected by
chance (Figure 1C). A common statistical test for this purpose is
the cumulative hypergeometric statistic. miRWalk2.0 is a com-
prehensive archive of miRNA–target interactions, which also
provides a framework for obtaining miRNA pairs that signifi-
cantly co-regulate genes [34]. In addition, DIANA miRPath v.2.0
provides two approaches (union or intersection of targets) for

investigating combinations of miRNAs [35]. These methods
mainly use the hypergeometric test to investigate the signifi-
cance of co-regulating target genes. However, given that the
length of 30 UTRs can vary, the assumption of the hypergeomet-
ric test may no longer hold. Some targets with long 30 UTRs are
likely to contain more binding sites for miRNAs, so a P-value
calculated based on the hypergeometric test may overestimate
the co-regulation rate. Thus, Shalgi et al. proposed an alterna-
tive, randomization-based test for identifying co-regulating
miRNA pairs [35]. In this model, they first calculate the ‘meet/
min’ score for each pair of miRNAs, before using an edge-
swapping algorithm to generate the randomized miRNA-gene
regulations. For each randomized miRNA-gene regulation,
the score is computed repeatedly for all the pairs of miRNAs.
The P-value for a pair of miRNAs is defined as the fraction of the
randomized conditions where the score for that pair is greater
than or equal to the original score.

In addition, specific statistical methods have been proposed
for identifying miRNA pairs that co-regulate a list of genes.
Tsang et al. introduced mirBridge [36] to consider the crosstalk
among miRNAs based on gene sets to further elucidate the
functions of miRNAs. Specifically, mirBridge first computes a
score by combining the results of three statistical tests to evalu-
ate different aspects of likely functional site enrichment for a
given gene set. The miRNAs grouped into the same families are
then assumed to function together by regulating common tar-
gets. GeneSet2miRNA [37] and miRror2.0 [38] are similar tools

Table 1. The commonly used methods to construct the miRNA–miRNA network based on genomics to phenomics

Name Omics data Hypothesis Software PubMed ID

Guo et al. Genomics (sequence) miRNA:miRNA duplex with complete
complementary structure

No 23031806

Chen et al. Genomics (chromatin interaction) miRNA interaction at chromatin level No 24357409
miRWalk2.0 Regulatory omics (predicted or validated miRNA

regulations)
Shared target genes Yes 26226356

DIANA
miRPath v.2.0

Regulatory and functional omics (predicted or
validated miRNA regulations and KEGG
pathway)

Co-regulated similar target genes Yes 22649059

mirBridge Genomics and regulatory omics (miRNA regula-
tions and conservation signature)

Co-regulated a list of genes No 20385095

GeneSet2miRNA Regulatory omics (predicted miRNA regulations) Co-regulated a list of genes Yes 19420064
miRror2.0 Regulatory omics (predicted miRNA regulations) Co-regulated a list of genes Yes 22904063
Shalgi et al. Regulatory omics (predicted miRNA regulations) Function similarity measured by propor-

tion of common target genes
No 17630826

Yu et al. Regulatory and functional omics (miRNA regula-
tions and GO annotation)

GO semantic similarities of target genes No –

C2Analyzer Regulatory and functional omics (miRNA regula-
tions and GO annotation)

Co-functionally enriched in GO terms Yes 24862384

Mal et al. Regulatory and functional omics (miRNA regula-
tions and GO annotation)

Co-functionally enriched in GO terms No 26066638

Yoon et al. Regulatory omics (miRNA regulations) Co-regulated functional modules No 16204133
miRFunSim Regulatory and functional omics (miRNA regula-

tions and PPI)
Targeting propensity and proteins con-

nectivity in PPI
No 23874989

Xu et al. Regulatory and functional omics (miRNA regula-
tions and PPI)

Site accessibility and the topology of tar-
get gene functional network

No 24149053

Meng et al. Regulatory and functional omics (miRNA regula-
tions and PPI)

Function similarity of target genes No 26538106

Xu et al. Regulatory and functional omics (miRNA regula-
tions, GO annotation and PPI)

Co-regulated functional modules No 20929877

Zhu et al. Regulatory and functional omics (miRNA regula-
tions and PPI)

Co-regulation and functional association
of target genes

No 23691029

Wang et al. Phenomics (miRNA–phenotype association) miRNA FS by measuring the similarity of
their associated disease DAG

Yes 20439255

miRNA–miRNA crosstalk | 3
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for exploring the links between miRNAs and a gene set.
GeneSet2miRNA takes a list of target genes as an input and per-
forms the hypergeometric test to examine whether there is a
regulatory association between the miRNAs and the gene set.
This tool may evaluate the cooperation among up to four
miRNAs. miRror estimates the likelihood that the combinatorial
effects of miRNAs can explain the observed data. These gene-
set-based tools have identified crosstalks among miRNAs, but
their performance depends greatly on the gene-sets used,
which limits their generalization.

miRNA crosstalk based on functional omics

In terms of the co-regulation of targets, another common as-
sumption is that the genes regulated by miRNA groups should
behave in a similar functional manner. Thus, many methods
have been proposed for identifying miRNA pairs with similar
functions. However, the functions of most miRNAs are un-
known. To better understand the crosstalk among miRNAs, it is
necessary to measure their functional similarity (FS). Many suc-
cessful methods have been proposed for determining the FS of
coding genes [39–41], but some of them are limited to infer the
FS of miRNAs. The simplest method reported by Shalgi et al. de-
fines the miRNA function similarity as the proportion of com-
mon targets [42], where they used the Jaccard similarity
between two target gene lists for two miRNAs to measure the
crosstalk among miRNAs. However, the functions of the targets
are not considered in this method. In addition, Yu et al. pro-
posed a second method for inferring the FS of miRNAs by using
the semantic similarities according to Gene Ontology (GO) for
their target genes (Figure 1D). The FS can also be represented as
the likelihood of the co-regulated genes sharing the same GO or

Kyoto Encyclopedia of Genes and Genomes (KEGG) categories,
which is usually identified by the hypergeometric test. Mal et al.
constructed an miRNA–miRNA functional synergistic network
in rice by considering the co-targeting genes in the context of
GO annotations [43], where they defined them as synergistic if
at least one GO category is significantly co-regulated by a pair of
miRNAs. The Cotarget–Co-function Analyzer [44] is a Perl-
based, versatile and user-friendly web tool for determining
whether given pairs of miRNAs are co-functionally enriched.

Owing to the absence of functional databases such as GO for
annotating some coding genes, gene functional networks are
also used to infer the FS of miRNAs. The first study in this area
was performed by Yoon et al. [44], who introduced the concept of
miRNA regulatory modules to define the coordinated activity of
miRNAs with their targets. They demonstrated the performance
of the proposed method on only one of the modules using en-
riched GO annotations. In addition, protein–protein interactions
(PPIs) involve the FS between proteins. It has been shown that
interacting proteins are regulated by similar miRNA types [45]
and clustered miRNAs also jointly regulate proteins that are
close in the network, where the number of co-regulations be-
tween proteins is negatively correlated with their distance in the
network [46]. Subsequent studies proposed PPI rules for defining
the FS of miRNAs. Thus, Sun et al. proposed a novel graph theor-
etic property-based computational framework and method [47]
called miRFunSim, for quantifying the associations between
miRNAs based on the targeting propensity of miRNAs and the
connectivity of protein in the integrated PPI network. They found
that the FS scores of miRNAs in the same family or cluster were
significantly higher compared with other miRNAs, which is con-
sistent with existing knowledge. Moreover, Xu et al. proposed a
new method for measuring the FS of miRNAs by considering

Figure 1. Identify the crosstalk among miRNAs from genomics to phenomics. (A) The methods based on genomic sequence information; (B) the methods based on

chromatin interaction; (C) the methods based on the miRNA-gene regulations; (D) the methods based on co-regulation of function modules; (E) the methods based on

similarity of associated diseases (phenomic similarity).
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both the site accessibility and the interactive context of target
genes in functional gene networks [48]. They applied this
method to soybean and investigated the crosstalk among
miRNAs in soybean. In these studies, GO and PPI were used
mainly to obtain functional information for investigating the
crosstalk among miRNAs. Recently, PPI network with semantic
similarity weights generated using GO terms was used to calcu-
late the FS of miRNAs [49], where the experimental results
showed that the proposed method was more effective and reli-
able than previous methods. Moreover, Xu et al. [50] constructed
an miRNA–miRNA functional synergistic network via co-
regulating functional modules, which were usually defined as
groups of interacting genes with more edges inside the module
compared with the other genes in the network (Figure 1D). The
functional modules were defined based on three features: com-
mon targets of corresponding miRNA pairs, enriched in the
same GO category and close proximity in the PPI network. These
studies indicate that GO and PPI functional annotations can con-
tribute jointly to synergistic miRNA identification. Thus, Zhu
et al. proposed an integrated parameter synergy score by com-
bining the miRNA-mediated gene co-regulation and functional
association between targets into a single parameter [16], where
they demonstrated that this synergy score can accurately iden-
tify the GO-defined miRNA synergy.

miRNA crosstalk based on phenomics

It has been reported that genes or miRNAs with similar func-
tions are often implicated in similar diseases, and vice versa.
Thus, a commonly used method is to identify miRNA crosstalk
based on their associated diseases (Figure 1E). However, few dis-
ease miRNAs are known because the limited number of miRNA
functional annotations and diseases are not independent.
According to previous research, similar to GO, the relationships
between different diseases can be represented in a directed
acyclic graph (DAG) structure, which allows the inference of
miRNA FS based on their associated diseases. Wang et al.
described a method for inferring the pairwise FS of human
miRNAs based on the structures of their disease relationships
[51], where the results showed that the calculated miRNA FS
was strongly associated with the prior miRNA functional rela-
tionship. Importantly, the proposed method can also be used to
predict novel miRNA biomarkers and to infer novel potential
functions or associated diseases for miRNAs.

Context-specific computational methods for
determining crosstalk among miRNAs:
transcriptome integrated methods

The global methods mentioned in the section above focus on
miRNA–miRNA networks at a global level. However, a major
limitation of these approaches is that we might expect miRNA
crosstalk to be reprogrammed in different biological contexts.
To address this limitation, methods have been proposed for
modeling context-specific miRNA–miRNA networks (Table 2).
These context-specific miRNA–miRNA networks are mainly
constructed in the same manner as the global methods except
described above but by considering two main features (Figure 2):
(A) differentially expressed (DE) miRNAs or genes; and (B)
context-specific miRNA–mRNA regulation. Next, we introduce
some representative methods for constructing the miRNA–
miRNA networks for specific diseases.

By analyzing the publicly available microarray data set of
miRNA expression, Chaulk et al. investigated the miRNA–

miRNA co-expression and showed that the co-expression
groups of miRNAs have similar biological activities [52]. In add-
ition, by integrating the miRNA and mRNA expression profiles
of colorectal cancers, Yin et al. first identified the DE miRNAs
and genes [53], before extracting the regulation of DE miRNAs
relative to the DE genes in the miRNA target gene database
(TargetScan). The synergistic relationships between DE miRNAs
were identified based on two restrictions: their target genes
overlapped in a nonrandom manner and the overlapping tar-
gets were significantly enriched in pathways. In addition, Hua
et al. proposed the construction of a coronary artery disease
(CAD)-related miRNA–miRNA synergistic network by combining
miRNA expression data with genome-wide single nucleotide
polymorphism (SNP) genotyping [54]. This process involves
three main steps. First, the DE miRNAs are identified using
CAD-related miRNA express profiling data and the miRNASNP
tool is then used to extract DE miRNAs and 30-UTR SNP pairs.
Finally, logistic regression is used to detect the significant inter-
actions among 30-UTR target SNPs of DE miRNAs. The miRNA–
miRNA pairs are identified based on the corresponding SNP
pairs. In another study, Xiao et al. identified the functional syn-
ergistic relationships among DE miRNAs in ischemic stroke [55],
where miRNAs that can commonly regulate at least one target
gene were used to construct an miRNA–miRNA network and
these miRNA pairs were then filtered based on the co-
regulation of functional modules. By integrating miRNA and
mRNA expression profiles, Alshalalfa et al. investigated mRNA-
mediated miRNA–miRNA interactions based on conditional mu-
tual information [56].

In addition to focusing on DE miRNAs and genes, increasing
evidence suggested that miRNA–mRNA regulation is context
specific. Many studies have combined the computational target
predictions obtained at the sequence level and the inverse ex-
pression relationships between miRNAs and mRNAs in the con-
text of specific diseases to construct functional miRNA–mRNA
regulatory networks (Figure 2B), before identifying the crosstalk
among miRNAs using the global methods mentioned above. Na
et al. created miRNA association network using miRNAs that
share target genes based on the sequence binding and co-
expression patterns of miRNA–target pairs [57], where they then
applied this method to circadian rhythm, actinomycinD treat-
ment, prostate cancer and radiation treatment. In another
study, Hua et al. analyzed miRNA and mRNA dual expression
profiling data obtained from the same breast cancer subtypes
samples and identified the dysregulated miRNA–mRNA pairs.
They then identified the miRNA–miRNA network for each sub-
type by co-targeting at least one gene. They found that luminal
A and basal-like subtype-specific networks exhibited changes in
the hubs that connected the most miRNAs [58]. In addition, Li
et al. proposed a novel model called Mirsynery to integrate
miRNA/mRNA expression profiles, target site information and
PPIs [59]. After applying this method to ovarian, breast and thy-
roid cancer, they proposed several prognostically promising
cancer-specific miRNA regulatory modules as biomarkers. Yang
and Ying et al. also constructed miRNA–miRNA networks in the
context of breast and ovarian cancer by integrating GO annota-
tions [60, 61]. Recently, Xiao et al. proposed a multistep method
for identifying dysfunctional miRNA–mRNA regulatory modules
in a specific disease by considering that an miRNA coopera-
tively regulates a group of targets involved with a specific func-
tion [62]. This method first identifies the DE miRNAs and genes,
and the inverse regulations among miRNAs and genes. The co-
operative functional units, in each of which a pair of
miRNAs cooperative repressed function-enriched and highly
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interconnected targets, were identified. They applied this
method to glioblastoma (GBM) and identified GBM-associated
miRNA regulatory modules at the population, subtype and indi-
vidual levels. Furthermore, some studies have considered the
co-expression of miRNA pairs to filter the identified miRNA–
miRNA pairs. For example, Zhang et al. analyzed the crosstalk
among miRNAs in small cell lung cancer based on the co-
expression and co-regulation of miRNA pairs [63]. In addition,
Song et al. identified lung cancer miRNA–miRNA co-regulation
networks using a progressive data refinement approach, where
the co-expression miRNA pairs are identified first before filter-
ing them based on the co-regulation of functional modules [64].
According to a literature survey and database validation, many
of their results regarding lung cancer are biologically meaning-
ful. All of these studies have demonstrated the importance of
miRNA synergism in cancer, but most focused mainly on a spe-
cific type of cancer, thus a pattern analysis across diverse
cancer types is needed. Recently, Meng et al. constructed
cancer-specific miRNA–miRNA synergistic network for 33
human cancer types, which were stored in the CancerNet data-
base [65]. This is a useful resource for assessing the roles of pro-
tein and miRNAs, as well as their interactions across cancers.

Conclusions and future directions

Elucidating the crosstalk among multiple miRNAs is important
for understanding the complex mechanisms posttranscrip-
tional regulations. Complex diseases, including cancers, are af-
fected by several miRNAs rather than a single miRNA. Thus, it is

important to identify miRNA synergisms and to further deter-
mine the functions of miRNAs at a system-wide level. Previous
biological theories indicate that researchers can use computa-
tional methods to infer the crosstalk among miRNAs. In this re-
view, we summarized the computational methods that are
available for constructing the global and context-specific
miRNA–miRNA networks, which are useful for experimental
biologists and bioinformatics specialists. For experimental
biologists, we summarized the relative strengths and limita-
tions of these commonly used methods, as well as providing
suggestions for selecting a suitable method. In addition, this
summary provides important insights for bioinformatics spe-
cialists, who can develop more accurate and efficient methods
for identifying miRNA crosstalk. A key issue when investigating
an miRNA–miRNA network is computing the similarities of the
two miRNAs. Thus, we described the commonly used
approaches for determining similarity measures using data
ranging from genomics to phenomics. In general, the crosstalk
among miRNAs can be determined by considering the se-
quence, chromatin interaction, co-regulation of target genes, se-
mantic similarity of the targets, co-regulation of functional
modules and co-association of diseases. However, most of these
approaches are based on miRNA-gene regulation, but miRNA-
gene assignments are not reliable because they are usually
identified by miRNA-target prediction tools, which may contain
incorrect data. Hence, researchers should aim to obtain more
comprehensive miRNA–miRNA networks by using highly
related biological information, such as GO and PPI. These meth-
ods for integrating predicted targets and functional information

Table 2. The methods integrated transcriptome to construct miRNA–miRNA networks

Name Omics data Hypothesis Context PubMed ID

Chaulk et al. miRNA expression Co-expression Multiple context 26563430
Yin et al. miRNA, mRNA expression profiles;

miRNA-mRNA regulations
DE genes and miRNAs Colorectal cancer 23246904

Hua et al. miRNA expression profiles; SNP DE miRNAs; associated with
common SNP

Coronary artery disease 25641175

Xiao et al. miRNA expression profiles; miRNA-mRNA
regulations; GO annotation

DE miRNAs Ischemic stroke 25108467

Alshalalfa et al. miRNA, mRNA expression profiles;
miRNA-mRNA regulations

Conditional mutual information Prostate cancer 23193399

Na et al. miRNA, mRNA expression profiles;
miRNA-mRNA regulations

Context-specific inverse
co-expression

Circadian rhythm;
ActinomycinD; Prostate
cancer; Radiation

24552551

Hua et al. miRNA, mRNA expression profiles;
miRNA-mRNA regulations

Context-specific co-expression of
miRNA and mRNA

Breast cancer subtype 23619378

Mirsynergy miRNA, mRNA expression profiles;
miRNA-mRNA regulations; gene–gene
interactions

Context-specific inverse
co-expression

Ovarian cancer; Breast cancer;
Thyroid cancer

24894504

Yang et al. miRNA, mRNA expression profiles;
miRNA-mRNA regulations; GO
annotation

Context-specific expression
co-functionality

Breast cancer 25680412

Ying et al. miRNA expression profiles; miRNA-mRNA
regulations; GO annotation

DE miRNAs; Co-functionality Ovarian cancer 24444095

Xiao et al. miRNA, mRNA expression profiles;
miRNA-mRNA regulations; GO annota-
tion and PPI

DE miRNAs, mRNAs; coregulated
functional modules

Glioblastoma 23516263

Zhang et al. miRNA expression profiles; miRNA-
phenotype relations

Coexpressed miRNAs Small-cell Lung Cancer 23464461

Song et al. miRNA expression profiles; miRNA-mRNA
regulations; GO annotation and PPI

Coexpressed miRNAs; co-regu-
lated functional modules

Lung cancer 26026830

Meng et al. miRNA, mRNA expression profiles;
miRNA-mRNA regulations and PPI

Context-specific inverse co-
expression proximity in PPI

33 cancer types 26690544
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could identify synergistic miRNA pairs and as well as elucidat-
ing their underlying functions. In addition, the crosslinking-
immunoprecipitation and high-throughput sequencing data
have been used to annotate the functional targeting sites of
miRNAs, but little effort has been made to use these data as a
filter to improve the specificity of currently available prediction
methods for miRNA–miRNA crosstalk.

Given that miRNA crosstalk is often reprogrammed in differ-
ent tissues, or different biological stages even within the same
tissues [66], then context-specific miRNA–miRNA networks may
provide a better representation. To identify context-specific net-
works, the methods proposed for de novo network reconstruc-
tion in recent studies only operate on miRNAs or genes that are
DE. However, these approaches might not capture miRNA sub-
networks that have been filtered out by expression. Other meth-
ods are based on context-specific miRNA-gene regulation, but
these methods may be limited by the need for the paired
miRNA/mRNA expression profiles of the same patients. With
the development of genomic data for human diseases, e.g. can-
cer-related data from The Cancer Genome Atlas project, so the
construction of cancer-specific miRNA–miRNA networks may
be particularly useful for inferring cancer-specific miRNA
biomarkers.

Furthermore, long noncoding RNAs (lncRNAs) are RNA mol-
ecules comprising >200 nucleotides, which are not translated
into proteins. lncRNAs comprise a major but still poorly charac-
terized component of the human transcriptome. Most of the
functions of lncRNAs are unknown, but the existing examples
of characterized lncRNAs demonstrate their widespread partici-
pation in biological functions [67]. Increasing evidence suggests
that lncRNAs play key roles in the life cycle of the cell and that
their dysfunction can lead to various diseases, including cancer.

Evidence also indicates that miRNA can also engage in crosstalk
with lncRNA, but the identification of miRNA–lncRNA inter-
actions is mainly blocked by the conservation of lncRNAs. At
present, there are a limited number of miRNA-lncRNA predic-
tion methods, but several examples suggest that lncRNAs can
also contribute cooperatively to tumorigenesis by directly mod-
ulating oncogenesis or tumor suppressor pathways. For ex-
ample, some lncRNAs form part of the large pool of genes
coordinated by the P53 transcriptional factor, but they are also
required to fine-tune the p53 response and to fully complete its
tumor suppressor program [68]. In addition, it has been reported
that combined lncRNA signatures may facilitate more accurate
predictions of patient survival than individual lncRNAs [69].
However, compared with miRNAs, the identification of crosstalk
among lncRNAs is a more challenging task because the targets
of lncRNAs are mainly unknown. Recently, Li et al. extended a
previous approach for identifying significant functional syner-
gistic lncRNA pairs based on the functional modules that they
jointly regulate [70]. They applied this approach to three can-
cers, and cancer-specific lncRNA–lncRNA networks were con-
structed before identifying prognostic biomarkers using the
modules in these networks. This proof-of-principle study indi-
cates that synergistic lncRNA pairs can be identified by the inte-
grative analysis of genome-wide expression data sets and
functional information. In addition, this study also demon-
strated that previous approaches used for identifying miRNA
crosstalk can be extended to lncRNAs.

Recent network-based methods for prioritizing disease-
related miRNAs have proved useful in cancer research [71, 72].
Integrating miRNA–miRNA network data to identify the associ-
ations between miRNAs and diseases can help researchers to
obtain better performance. In this review, we described

Figure 2. Transcriptome integrated approaches for identifying the context-specific crosstalk among miRNAs. (A) The methods based on context-specific DE miRNAs

and/or mRNAs; (B) the methods based on context-specific miRNA-mRNA regulations.
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representative methods in the field of miRNA–miRNA relation-
ship network modeling, but it was not possible to include all of
the available methods. Moreover, as numerous computational
methods are available, it is difficult to decide the best method
because they are often complementary to each other. We con-
sider that the use of each method depends on the type of data
set or the confidence of the miRNA–miRNA relationships that
need to be identified. There is a lack of large-scale power com-
parisons among these methods, but the users can select a par-
ticular method by understanding the relative strengths and
limitations of these commonly used methods. Single data set-
based methods (such as those based on genomic sequences,
chromatin similarity or miRNA–mRNA regulation) are simple to
realized. However, these methods may yield many combin-
ations of miRNA pairs with a higher false positive rate.
Moreover, the increased volume of high-throughput data means
that integrative methods (such as methods based on co-
regulating functional modules) may be good candidates.
Because these methods can dramatically benefit from each
integrated data set and reduce the number of false positives. In
addition, these methods can identify miRNA crosstalk as well
as revealing their underlying functional patterns. Given that the
miRNA–miRNA crosstalk may be reprogrammed in different
contexts, integrated methods based on transcriptome data may
provide a better representation of miRNA crosstalk in a specific
context. However, these methods may be limited by the require-
ment for paired miRNA/mRNA expression profiles. In general,
all of the methods described in the present review have
demonstrated the importance of miRNA synergism as well as
indicating that the integration of functional information with
context-specific genomic data sets can yield more accurate in-
ferences. With the increase in omics data set of complex dis-
eases, it is envisioned that these approaches may be applied to
more biological systems in the future.

Key Points

• Functional miRNA–miRNA crosstalk helps to improve
our understanding of complex regulatory networks in
normal and disease-specific physiological condition.

• Numerous approaches have been proposed for model-
ing miRNA crosstalk, which can range from genomics
to phenomics.

• We reviewed the representative state-of-the-art miRNA–
miRNA network inference methods, with an emphasis
on the integration of multiple omics data sets.

• Numerous computational methods are available but it
is difficult to decide which method is best because
they are often complementary to each other.
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