Critical Factors For Successful Real-Time RT-PCR

Andreas Missel, PhD
Senior Scientist R&D
Dept. Modification/Amplification
QIAGEN

Annealing

Specific product High yield High sensitivity

Nonspecific product Low yield Low sensitivity

SYBR Green Detection

→ Detection of specific & non-specific PCR products

Specificity & SYBR Green Based Detection

Non-specific PCR products result in:

- Non-specific fluorescent signals (e.g. by primer-dimers)
- Reduced sensitivity
- Inaccurate quantification

Factors Influencing PCR Specificity

- Amount of template
- Primer design
- Cations
- Initial artifact generation by Taq DNA polymerase

Effects of Cations

Variable Mg²⁺ Concentration

Effect of Mg²⁺ Concentration

PCR Specificity: Initial PCR Cycle

Nonspecific amplification starts during

- Reaction setup at room temperature
- Initial heating phase of thermal cycler

Different Hot Start Methods

Effect of Specificity on PCR Sensitivity (SYBR Green)

Improved Sensitivity in Probe-based Assays

100 ng at C_T 22.2

10 pg at C_{T} 35.5

Efficiency: 98%

Supplier A_{II}

100 ng at C_T 25.5

10 pg at C_{T} 44.4

Efficiency: 89% (61%)

Gene Expression Assay Mm_Bcl2

QuantiTect PCR & RT-PCR Kits

- Balanced combination of KCl and (NH₄)₂SO₄
 →Specific primer annealing during each cycle
- Stringent hot start with HotStarTaq DNA Polymerase
 →High PCR specificity in initial PCR step
- Accurate & sensitive quantitation of transcripts
- Optimized for use with any real-time cycler
- Ready-to-use master mix format

RT-PCR: The Reverse Transcription Step

- Methods
- Efficiency, Sensitivity and Specificity
- **Primers**
- Template

One-Step and Two Step RT-PCR

- One-Step RT-PCR
 - Single tube reaction
 - Direct link of both steps
 - RT starts from reverse PCR primer
 - Fast & reproducible procedure
- Two-Step RT-PCR
 - Two reaction setups
 - Temporally and physically separated
 - Various types of RT primers
 - 1 RT for multiple transcripts
 - Long-term storage of cDNA

One Step RT-PCR: Problems and Solutions (I)

Inhibition of PCR by RT enzyme

- Water
- 10 % mock RT
- 20 % mock RT
- 30 % mock RT
- No template control

Inhibition relief by

Optimizated RT/PCR enzyme ratio

Additives (proprietary, patented technology)

One Step RT-PCR: Problems and Solutions (II)

- Efficiency and cDNA yield
 - High-affinity RT enzymes
 - Buffer additives

- → No truncated cDNA
 - → High RT temperature

- Specificity and Sensitivity
 - HotStarTaq
 - Balanced ion composition
- → No interference with RT step
- High annealing specificity

Reliable Quantitation in One-Step Real-time RT-PCR

Choice of RT Primer

Selectivity
 Gene-specific (Oligo-dT)

cDNA length
 Oligo-dT (Gene specific)

Amplicon position
 Gene-specific (Random oligomers)

Flexibility
 Oligo-dT + Random Oligomers

Effect of RT Primer Choice

Amplicon – 3'-end: 6 kb

Effect of RT Volume in Real-time PCR Reaction

Target A

Target B

Summary: Reverse Transcription & Real-Time PC

- High-affinity RT Enzymes and Buffer Additives
 - → Sensitive and linear one-step quantification
- Use of RT Primer Mixture
 - → High flexibility in amplicon choice
- Limited RT template volume
 - → Inhibition-free and reliable amplification

QIAGEN R&D Group Modification/Amplification

