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Opinion
In multicellular organisms, cell-to-cell communication is
of particular importance for the proper development and
function of the organism as a whole. Intensive studies
over the past three years suggesting horizontal transfer of
secreted microRNAs (miRNAs) between cells point to a
potentially novel role for these molecules in intercellular
communication. Using a microvesicle-dependent, or
RNA-binding protein-associated, active trafficking sys-
tem, secreted miRNAs can be delivered into recipient cells
where they function as endogenous miRNAs, simulta-
neously regulating multiple target genes or signaling
events. In this Opinion, we summarize recent literature
on the biogenesis and uptake of secreted miRNAs, pro-
pose a possible working model for how secreted miRNAs
might be sorted and transferred between cells and spec-
ulate on their biological significance.

Secreted miRNAs as an emerging new form of
intercellular communication
The ability of a cell to communicate with neighboring cells
and to sense their local microenvironment forms the basis
for coordinated cellular activity in multicellular organ-
isms. Classic cell-to-cell communication is mediated by
several methods, including cell junctions, adhesion con-
tacts or soluble messengers (Figure 1) [1–4]. Findings over
the past several years, however, suggest the existence of an
additional form of intercellular communication: horizontal
transfer of secreted miRNAs (Figure 1).

Importantly, secreted miRNAs represent a newly discov-
ered mechanism by which donor cells can influence the gene
expression of recipient cells. The secretory mechanism
remains essentially unknown, however, and the biological
impact of these molecules in multicellular organisms is
unclear. In this Opinion, we summarize the known char-
acteristics of secreted miRNAs and propose a mechanism for
their secretion and incorporation into cells. We also discuss
recent reports that suggest regulatory roles for secreted
miRNAs in physiological and pathological processes.

Definition of secreted miRNAs
Numerous studies have documented the importance of
miRNAs, which are a class of endogenous noncoding RNAs
consisting of 19 to 24 nucleotides that regulate the post-
transcriptional silencing of protein-coding genes in eukar-
yotes (Box 1) [5–7]. Once thought to be unstable molecules,
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miRNAs were recently demonstrated to circulate in a
highly stable, cell-free form in various body fluids, includ-
ing serum [8–10], plasma [11], saliva [12], urine [13] and
milk [14,15]. Furthermore, circulating miRNAs can be
significantly altered in a wide range of pathological con-
ditions, including cancers [8,9,11–13], diabetes [9] and
tissue injuries [16–18]. The source of such extracellular
miRNAs is not known but three different pathways have
been suggested (Figure 2): (i) passive leakage from broken
cells due to tissue injury, chronic inflammation, cell apo-
ptosis or necrosis, or from cells with a short half-life, such
as platelets. (ii) Active secretion via microvesicles, includ-
ing exosomes and shedding vesicles, which are membrane-
enclosed cell fragments released by almost all cell types
under both normal and pathological conditions (Box 2) [19–

23]. Recent studies have suggested that not only are micro-
vesicles specifically targeted to recipient cells to exchange
proteins, mRNA and lipids [24,25] but also they can deliver
miRNAs to trigger downstream signaling events [26–30].
(iii) Active secretion using a microvesicle-free, RNA-bind-
ing protein-dependent pathway. A recent study indicated
that high-density lipoprotein (HDL) can readily associate
with exogenous miRNAs and deliver them to recipient cells
[31]. Moreover, studies have shown that a significant
portion of circulating miRNAs in plasma is not encapsu-
lated in microvesicles but is associated with Argonaute2
(AGO2) [32,33]. Another RNA-binding protein, nucleo-
phosmin 1 (NPM1), was also found to bind circulating
miRNAs [34]. However, there is no direct evidence that
microvesicle-free, AGO2- or NPM1-associated miRNAs are
actively released from cells, nor is there evidence of their
uptake into recipient cells. Whether these protein-bound
extracellular miRNAs originate from cell lysis or broken
vesicles, or are secreted from cells in a vesicle-independent
way, requires further study.

In contrast to passive leakage from broken cells, secretion
of miRNAs via microvesicles and HDL is active and energy
dependent, and this is the key characteristic that distin-
guishes secreted miRNAs from other types of circulating
miRNAs. The physiological and functional differences be-
tween microvesicle-enclosed and RNA-binding protein-as-
sociated secreted miRNAs are largely unknown, although
these processes may use different secretion mechanisms.

Molecular basis for the stability of secreted miRNAs
A crucial question surrounding secreted miRNAs con-
cerns their stability in the circulation despite the pres-
ence of ubiquitous ribonucleases (RNases). Two possible
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Figure 1. A secreted microRNA (miRNA)-mediated gene regulatory network as a novel form of intercellular communication. Cells can communicate by several means:

adjacent cells can communicate through (i) specific junctions that allow the exchange of small intracellular signaling molecules or (ii) direct adhesion contacts between a

membrane-bound signaling molecule on one cell and a receptor on the surface of another cell. Cells also can communicate via soluble messengers, such as hormones,

cytokines and chemokines, which may act (iii) on the original cells (autocrine action) or (iv) on adjacent cells (paracrine action) or (v) travel long distances through

intercellular nanotubes to affect target cells (endocrine action). In addition to these methods, (vi) secreted miRNA-mediated gene regulatory networks represent another

type of intercellular communication in which a group of specific miRNAs can be transferred to target cells via microvesicles or RNA-binding proteins. These exogenous

miRNAs can then activate myriad signaling events in the recipient cells by modulating expression of their target genes.
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mechanisms have been suggested: (i) protection of secret-
ed miRNAs by the membrane structures of microvesicles
[26–28,30]; and (ii) stabilization of secreted miRNAs by
their association with RNA-binding proteins, such as
AGO2 and NPM1 [32–34]. Both of these mechanisms –

microvesicle membrane enclosure and protein conjunc-
tion – could provide a protected and controlled internal
microenvironment for secreted miRNAs, allowing them to
travel long distances without degradation.

Molecular mechanism for packaging and secretion of
miRNAs
Evidence suggests that miRNA packaging occurs non-ran-
domly and that specific miRNA populations are preferen-
tially sorted into microvesicles. We have found direct
evidence that blood cells and cultured THP-1 cells actively
and selectively package miRNAs into microvesicles
and secrete them into the circulation or culture medium
in response to various stimuli [27]. Other studies have
2

demonstrated that certain miRNAs are present dominant-
ly or at higher levels in exosomes than in the donor cells
when normalized to the total RNA or total protein content
[26,28,29].

One study has demonstrated that a ceramide-depen-
dent secretory mechanism, which can induce endosome
sorting into the exocytic multivesicular bodies (MVBs)
[35], actively regulated the release of exosomal miRNAs
from HEK293 cells [30]. Neutral sphingomyelinase 2
(nSMase2), which controls ceramide biosynthesis, regu-
lates the secretion of exosomal miRNAs [30]. However,
the endosomal sorting complex required for transport
(ESCRT) system, which has a central role in the accumu-
lation of exosomes to be targeted to lysosomes [36,37], is
unnecessary for the release of miRNAs [30]. These results
suggest a ceramide-triggered, ESCRT-independent mech-
anism for exosomal miRNA secretion. The increase in
miRNA secretion mediated by nSMase2 might be associ-
ated with an increase in the number of exosomes released



Box 1. Biogenesis and function of miRNAs

miRNAs are naturally occurring small non-coding RNAs of about 22

nucleotides in length [5–7]. In the nucleus, miRNA is transcribed by

RNA polymerase II (Pol II) to generate a long transcript called primary

miRNA (pri-miRNA). pri-miRNA is subsequently recognized and

cleaved by a complex formed by the RNase III enzyme Drosha and

its binding partner DGCR8 (DiGeorge syndrome critical region 8, or

Pasha), yielding precursor miRNA (pre-miRNA). pre-miRNA is 70–90

nucleotides in length and has an imperfect stem loop hairpin

structure. It is exported to the cytoplasm by Exportin 5 in a Ran-

GTP-dependent mechanism. Upon entering the cytoplasm, the pre-

miRNA is cleaved by a complex formed by the RNase III enzyme Dicer

and its binding partner transactivation-responsive RNA-binding

protein (TRBP), resulting in a small double-stranded RNA duplex that

contains both the mature miRNA strand and its complementary

strand [5–7]. The miRNA duplex is subsequently unwound by RNA

helicase, and the single-stranded mature miRNA is incorporated into

the RNA-induced silencing complex (RISC). The miRNA then guides

RISC to complementary sites (usually 30-UTR) within target mRNA

and inhibits the function of mRNA by two different mechanisms,

depending upon the complementarity between the miRNA and its

target mRNA: perfect base-paring results in mRNA degradation

whereas imperfect binding represses protein translation [5–7].

miRNAs modulate various crucial biological processes, including cell

proliferation, differentiation, apoptosis, tumorigenesis, immune re-

sponse and viral infection, and their altered expression contributes to

the pathogenesis of many human malignancies [5–7].

Box 2. Microvesicles, exosomes and shedding vesicles

Microvesicles, exosomes and shedding vesicles are small membra-

nous vesicles released by almost all cell types under both normal

and pathological conditions. They are important mediators of

intercellular communication, although they were previously thought

to be inert cell debris. The nomenclature of these subcellular

vesicles is controversial, and it is unclear to what extent they are

normally present [19–23]. Therefore, the introduction of a consensus

non-overlapping terminology is needed. In general, they can be

distinguished depending on their mechanism of biogenesis and

release. Microvesicles are mixed vesicle populations containing

both shedding vesicles and exosomes, which are heterogeneous in

size ranging from 30 to 1000 nm in diameter [19,21].

Exosomes are small secreted vesicles with a diameter between 30

and 100 nm [20–23]. Exosome generation is initiated when cell

membrane proteins transfer to early endosomes by inward

budding. Intraluminal vesicles are then generated through invagina-

tion of endosomal membranes, thus forming MVBs. The molecules

within the intraluminal vesicles (or exosomes) can either be sorted

for degradation by fusion of the MVB with lysosomes or secreted by

fusion of the MVB with the plasma membrane. ESCRT, a well-

characterized multiprotein complex, plays a central role in the

accumulation of vesicles destined for lysosomes. Another process

independent of the ESCRT machinery but triggered by the ceramide

pathway can induce vesicle sorting into the exocytic MVBs [20–23].

Shedding vesicles are a heterogeneous population of larger

vesicles with a diameter between 100 and 1000 nm that are released

into the extracellular space by outward budding and fission of the

plasma membrane [19].

Microvesicles contain a variable spectrum of parental cell mole-

cules, including RNA, proteins and lipids, either enclosed inside the

vesicles or located on the surface, but they lack cellular organelles,

such as mitochondria, lysosomes and nuclei [19–23]. Once shed,

microvesicles can be transferred to target cells and are functionally

active at their new location, thus facilitating the horizontal delivery of

bioactive molecules from cell to cell or activating receptors on the

plasma membrane of the recipient cells with surface ligands.

Microvesicle release has been described from reticulocytes, dendritic

cells, B cells, T cells, epithelial cells, platelets, adipocytes, mast cells,

macrophages, monocytes, mesenchymal stem cells, embryonic stem

cells, hematopoietic stem cells, neurons and tumor cells. In addition,

microvesicles exist in a variety of biological fluids, including plasma,

urine, breast milk, saliva, semen, amniotic fluid and malignant

effusions. They are thought to play pivotal roles in various

physiological and pathological processes, such as tumor progression,

immune surveillance and pregnancy [19–23].
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by cells, or with an increase in the amount of miRNAs
packaged into exosomes. It is currently unclear which
mechanism accounts for the increased extracellular levels
of miRNAs. In addition, the biogenesis of shedding vesicle-
carried miRNAs is not understood. It is therefore essential
to uncover the molecular machinery that directs specific
miRNA molecules to the sites of vesicle shedding at the
plasma membrane.

There is evidence that HDL transports endogenous
miRNAs to recipient cells [31]. Strikingly, nSMase2 and
also probably the ceramide pathway were shown to repress
the cellular export of miRNAs to HDL [31]. Because over-
expression of nSMase2 and activation of the ceramide
pathway have previously been shown to induce exosome
release from cells and trigger cellular export of miRNAs
[30], the export of specific miRNAs through the exosomal
pathway and the HDL pathway may be distinct and possi-
bly opposing mechanisms.

Evidence has been provided that the loading of miRNAs
into exosomes may not be a random event but instead is
controlled by specific proteins of the RNA-induced silenc-
ing complex (RISC) [38]. GW182, which is required for
miRNA function through its association with AGO2, is
dramatically enriched in exosomes [38]. In agreement with
this, the AGO2 protein has been observed in exosomes
derived from cultured THP-1 cells [27]. These findings
suggest that exosomes not only transfer miRNAs but also
deliver cellular components of the RISC to enhance miRNA
function.

Several mechanisms have been suggested to control the
biogenesis, sorting and release of secreted miRNAs
(Figure 3a). Although the underlying mechanisms remain
unclear, the packaging of specific miRNA populations into
microvesicles appears to be a selective process. Because
components of RISC, such as AGO2 and GW182, have been
detected in exosomes, it is possible that RISC may be
involved in the packaging of miRNAs into exosomes. Fur-
thermore, a ceramide-dependent pathway controls the
incorporation of miRNAs into exosomes, but it represses
miRNA packaging into HDL particles. Thus, nSMase2
might be a key factor in determining miRNA sorting to
exosomes or RNA-binding proteins. Further studies are
necessary to unveil how miRNAs are sorted into exosomes,
shedding vesicles and HDL particles, and whether there is
regulated specificity in the process.

Uptake of secreted miRNAs by recipient cells
Another important point that requires future study is how
secreted miRNAs execute their functions in recipient cells.
THP-1 cell-derived microvesicles containing abundant miR-
150 can deliver miR-150 into the human microvascular
endothelial cell line (HMEC-1), resulting in suppression
of c-Myb (a known target gene for miR-150 [39]) in recipient
cells and enhanced migration capacity [27]. Secreted miR-
146a suppresses expression of its known target gene ROCK1
[40] in recipient prostate cancer PC-3 M cells [30]. In addi-
tion, intratumoral injection of exosomes enriched with
3
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Figure 2. The relationship between circulating microRNAs (miRNAs) and secreted miRNAs. miRNAs can enter the circulation through three pathways: (i) passive leakage

from broken cells; (ii) active secretion via microvesicles, including exosomes and shedding vesicles; and (iii) active secretion in conjunction with the RNA-binding protein

high-density lipoprotein (HDL). Other RNA-binding proteins, including Argonaute2 (AGO2) and nucleophosmin 1 (NPM1), are found to bind circulating miRNAs; however,

whether AGO2- or NPM1-bound miRNAs are actively released from cells and can be taken up by recipient cells is currently unclear. miRNA secretion via microvesicles and

HDL is active and energy dependent, and this is the key characteristic that distinguishes secreted miRNAs from passively leaked miRNAs.

Opinion Trends in Cell Biology xxx xxxx, Vol. xxx, No. x

TICB-851; No. of Pages 8
miR-16 into nude mice implanted with prostate cancer PC-
3 M cells results in the transfer of secreted miR-16 into
cancer cells and suppression of a luciferase reporter contain-
ing the 30-untranslated region (30-UTR) of BCL2 (a direct
target of miR-16) [41]. Taken together, these results dem-
onstrate that secreted miRNAs packaged in microvesicles
can be delivered into recipient cells and act as physiologi-
cally functional molecules to exert gene silencing through
the same mechanism as endogenous miRNAs.

It has also been demonstrated that HDL delivers en-
dogenous miRNAs to recipient cells with functional target-
ing capabilities, leading to altered gene expression [31].
HDL-mediated delivery of miRNAs appears to be depen-
dent on scavenger receptor class B type I (SR-BI), which is
a cell surface HDL receptor that mediates selective uptake
4

of the lipid cargo of HDL [31]. SR-BI-mediated transfer of
HDL-miRNAs may prevent the delivery of miRNAs into
the lysosomal pathway and instead divert them into the
cytoplasm where they would be expected to be more stable,
have increased functional integrity and potentially alter
gene expression [31].

One of the least understood issues in this field is how
secreted miRNAs are taken up into recipient cells and
whether specific cells are targeted. The mode of uptake
and its specificity will influence the functional role of
secreted miRNAs. We postulate that microvesicle-enclosed
secreted miRNAs can be taken up when microvesicles are
internalized by endocytosis, phagocytosis or direct fusion
with the plasma membranes. RNA-binding protein-associ-
ated secreted miRNAs could be taken up via specific recep-
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Figure 3. The biogenesis and proposed working model of secreted microRNAs (miRNAs). (a) Schematic description of the sorting and release of secreted miRNAs. After

being transcribed in the nucleus, exported to the cytoplasm and processed into a mature form, miRNAs can bind to complementary sequences on target mRNAs to repress

translation or trigger mRNA cleavage. They can also be packaged and transported to the extracellular environment via three different pathways. (i) The generation of

exosomal miRNAs requires ceramide production on the cytosolic side by neutral sphingomyelinase 2 (nSMase2), and other molecules that are targeted to lysosomes

depend on the endosomal sorting complex required for transport (ESCRT) machinery. Thus, a ceramide-dependent, ESCRT-independent pathway may control the

incorporation of miRNAs into exosomes. Furthermore, exosomes may deliver cellular components of the RNA-induced silencing complex (RISC), such as GW182 and

Argonaute2 (AGO2), to enhance the biological function of the secreted miRNAs. After fusion of multivesicular bodies (MVBs) with the plasma membrane, exosomal

miRNAs are released into the circulation accompanying the release of exosomes. (ii) Shedding vesicles are formed by the process of blebbing or shedding from the plasma

membrane. However, it is currently unknown how miRNAs are shed at the cell surface. (iii) miRNA inside the donor cell can be stably exported in conjunction with RNA-

binding proteins, such as high-density lipoprotein (HDL). nSMase2 represses cellular export of miRNAs to HDL. (b) Schematic description of the uptake of secreted miRNAs

in recipient cells. Exosomes and shedding vesicles can donate their miRNAs to recipient cells by the process of endocytosis, phagocytosis or direct fusion with the plasma

membrane. HDL-associated miRNAs are taken up by recipient cells through binding to scavenger receptor class B type I (SR-BI) receptors present at the recipient cellular

membrane. Because one miRNA can target numerous mRNAs and numerous miRNAs can target one mRNA simultaneously, secreted miRNAs may function in networks

that form a complex system regulating myriad signaling events in the target cells.
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tors on the cell surface. Cell recognition molecules on
microvesicle surfaces or specific receptors on recipient cell
membranes could allow specificity in uptake. We propose a
possible working model by which secreted miRNAs might
function in recipient cells (Figure 3b). As shown, numerous
miRNAs could be incorporated at once, thus regulating
multiple target genes simultaneously.

Role of secreted miRNAs in regulating physiological and
pathological processes
miRNAs secreted by immune cells, stem cells, adipocytes
and blood cells have recently been identified (Table 1).
There is evidence for antigen-driven unidirectional trans-
fer of miRNAs, such as miR-335, from T cells to antigen-
presenting cells (APCs) via CD63+ exosomes during T
cell–APC cognate immune interactions [29]. Further-
more, upon co-culture of T cells with APCs, a luciferase
reporter containing the 30-UTR of SOX4 (a direct target of
miR-335) was significantly reduced, presumably via exo-
somal miR-335 [29]. The authors proposed that this
miRNA transfer can fine-tune gene expression during
generation of the immune response and increase the
complexity of communication between immune cells.
Microvesicles derived from embryonic stem cells contain
5



Table 1. The potential roles of secreted miRNAs in various physiological and pathological processes

Secreted miRNA Transport

system

Donor cell Target cell Target

gene

Biological function

of secreted miRNA

References

let-7, miR-1,

miR-15, miR-16,

miR-181 and miR-375

Exosome Mast cell line (MC/9 and HMC-1),

primary bone marrow-derived

mast cell

[26]

miR-150 Microvesicle Human monocytic cell line

(THP-1)

Human microvascular

endothelial cell line

(HMEC-1)

c-Myb Promote cell

migration

[27]

miR-335 Exosome Human Jurkat-derived T-cell line

(J77 cell expressing miR-335)

Human

lymphoblastoid

B cell line (Raji)

SOX4 Regulate immune

synapsis

[29]

miR-16, miR-21,

miR-143, miR-146a

and miR-155

Exosome Human embryonic kidney cell

line (HEK293)

[30]

miR-290, miR-291-3p,

miR-292-3p, miR-294

and miR-295

Microvesicle Mouse embryonic stem cell Mouse embryonic

fibroblast

[42]

miR-21, miR-99a,

miR-100 and

miR-223

Microvesicle Human bone marrow derived

mesenchymal stem cell, liver

resident stem cell

Murine tubular

epithelial cell

PTEN,

cyclin D1

and Bcl-2

[43]

miR-223, miR-484,

miR-191, miR-146a,

miR-16, miR-26a,

miR-222, miR-24,

miR-126 and

miR-32

Microvesicle Peripheral blood cell [44]

let-7b, miR-103,

miR-148a, miR-16,

miR-27a, miR-146b

and miR-222

Microvesicle Mouse preadipocyte cell line

(3T3-L1), primary rat adipocyte

[45,46]

miR-21 Microvesicle Primary human glioblastoma

cell

Human brain

microvascular

endothelial cell

(HBMVEC)

[28]

EBV-miRNA Exosome EBV-transformed B

lymphoblastoid cell

Monocyte-derived

dendritic cell

CXCL11

and LMP1

Repress

immunostimulatory

gene

[52]

EBV-miRNA Exosome EBV-positive nasopharyngeal

carcinoma cell line (C666)

Human umbilical

vein endothelial

cell (HUVEC)

[54]

miR-517a Exosome Human chorionic villi (especially

syncytiotrophoblast), human

trophoblast cell line (BeWo)

[57]

miR-101, miR-125b,

miR-150, miR-223,

miR-24 and miR-93

Microvesicle Bovine milk [58]

miR-223. HDL particle Human plasma Hepatocyte (Huh7) RhoB and

EFNA1

[31]
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abundant miRNAs that can be transferred to mouse
embryonic fibroblasts in vitro [42]. Moreover, miRNAs
from mesenchymal stem cells are transferred to recipient
murine tubular epithelial cells after microvesicle incor-
poration [43]. In other studies, miRNAs were detected in
microvesicles from peripheral blood [44] and adipocytes
[45,46]. In these reports, the existence of secreted miR-
NAs from immune cells, stem cells, adipocytes and blood
cells is clear, but the secretory mechanism and the bio-
logical function of intercellular transfer of miRNAs from
donor cells to recipient cells remain largely unclear.
These findings open the intriguing possibility that, at
least for these cell types, a cell can alter the expression of
genes in neighboring cells by transferring miRNAs con-
tained in microvesicles. Further investigations are re-
quired to assess the role and biological significance of
6

secreted miRNAs in the regulation of communication
among these cells.

The role of secreted miRNAs in tumor progression and
viral infection was recently explored (Table 1). Many
tumors have a remarkable ability to manipulate their
stromal environment to their own advantage. Studies have
shown the importance of communication between cancer
cells and their surroundings through microvesicles [47].
Brain microvascular endothelial cells were shown to take
up exosomes that contained mRNA, miRNA and angiogen-
ic proteins released by glioblastoma cells [28]. Moreover,
miR-21, which is known to be overexpressed in glioblasto-
ma tumors, was higher in serum microvesicles from
glioblastoma patients than in healthy controls [28].
Interestingly, two other studies also demonstrated the
existence of abundant miRNAs in tumor-derived exosomes
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and showed that the miRNA signature in secreted exo-
somes parallels that of the originating tumor cells [48,49].
These results suggest that the miRNA composition in
secreted microvesicles might reflect molecular changes
in cells from which they are derived and, therefore, may
provide diagnostic information and aid in therapeutic
decisions for cancer patients. However, there is no direct
evidence demonstrating that exosomes of cancer cells can
contribute to the horizontal transfer of oncogenic miRNAs
to normal cells. Whether the secreted miRNAs released
from tumor cells have a fundamental role in tumorigenesis,
such as suppressing the immune response, accelerating
metastasis or facilitating the formation of a tumor micro-
environment, requires further study. Epstein–Barr virus
(EBV) is the first known virus to encode miRNAs [50].
EBV-miRNAs are abundantly expressed in EBV-associat-
ed tumors, such as nasopharyngeal carcinoma (NPC) [51].
Viral miRNAs secreted by EBV-infected cells are trans-
ferred to, and act in, uninfected recipient cells through
exosomes [52]. These EBV-miRNAs also repressed the
confirmed target gene chemokine (C-X-C motif) ligand
11 (CXCL11) [52], a small chemokine belonging to the
CXC chemokine family that elicits effects on target cells
by interacting with the cell surface chemokine receptor
CXCR3 and inducing a chemotactic response in activated T
cells [53]. Two other studies also reported that exosomes
released from EBV-positive NPC cell lines contain viral
miRNAs [54,55]. These studies demonstrate that miRNAs
secreted by EBV-infected cells can be transferred to unin-
fected recipient cells where viral miRNAs hijack the exo-
some of host cells and silence immunoregulatory genes in
the recipient cells.

Given the emerging nature of this field, it is important to
note that there are more questions than answers at this
point in terms of the biological roles for secreted miRNAs.
Because many investigations only test reporter expression
and do not show that endogenous mRNA or protein targets
are affected by secreted miRNAs, it is difficult to determine
the functional consequences of miRNA transfer in recipient
cells. To better understand the crosstalk between donor
and target cells, further studies are needed to more pre-
cisely elucidate the physiological relevance of these miR-
NAs.

Secreted miRNAs as a new tool for fetal–maternal
crosstalk
Recent studies have demonstrated that placenta-derived
exosomes function as immune regulators in fetal–mater-
nal crosstalk, thus improving maternal adaptation to the
ongoing pregnancy and promoting fetal allograft survival
[56]. Placenta-specific miRNAs have been observed in
exosomes from villous trophoblasts [57]. More investiga-
tion is needed to elucidate the role of these miRNAs during
pregnancy, however, and to test if they have the capacity to
enter and reprogram maternal cells in favor of fetal sur-
vival. Some immune-related miRNAs are present in bo-
vine milk-derived microvesicles at considerable levels
[58]. Notably, this was confirmed by two other papers
providing evidence for the presence of abundant im-
mune-related miRNAs in milk, especially in colostrum
[14,15]. However, the molecular basis of this phenomenon
remains unknown. Further studies are required to test
whether miRNAs from breast milk are biologically func-
tional and contribute to the development of the immune
system of infants.

Concluding remarks
It has traditionally been thought that ‘classic’ cell-to-cell
communication is mediated by cell junctions, adhesion
contacts or secreted signals, such as hormones
(Figure 1). However, an additional mechanism of intercel-
lular communication mediated by secreted miRNA has
recently been uncovered (Figure 1). As a new type of
signaling molecule, secreted miRNAs have some important
features: (i) they appear to be a common phenomenon
affecting many cell types; (ii) they can have biological
effects close by or at a distance; (iii) they can be delivered
independent of cell contact or adhesion; and (iv) they can
deliver multiple messages at once and regulate numerous
target genes simultaneously, allowing immediate control
over target cells.

The discovery of secreted miRNAs has triggered an
explosion of research activity but left many unanswered
questions. For example, it is important to elucidate the
mechanisms governing the biogenesis, sorting, release
and uptake of secreted miRNAs. Other questions that
need to be addressed are whether miRNAs convey physi-
ologically important information for cells and whether
secretion is a selective process. Moreover, it is essential
to elucidate the role of secreted miRNAs in regulating
physiological and pathological processes and to determine
the physiologically relevant amounts of secreted miRNAs
required for cell-to-cell signaling. Whether the secretion
and incorporation of miRNAs are generally conserved
phenomena remains to be described. Nevertheless, this
new form of intercellular communication may herald a
new era in our understanding of signal and molecule
transfer between cells. The elucidation of this novel infor-
mation transfer system will be important in understand-
ing many biological processes including development,
immune response and tumorigenesis.
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