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on a surface can be extended asynchronously, thereby allowing substan-
tial flexibility in the kinetics of sequencing chemistry. Previous reports 
of single-molecule sequencing have been proofs of principle11–13, and 
their sequencing throughput has not been competitive with alternative 
approaches. Generally, read lengths have been relatively short and error 
rates have been dominated by deletions; it has not been clear whether 
the resulting sequence quality is suitable for human genome sequenc-
ing applications.

The Heliscope Single Molecule Sequencer (Helicos Biosciences) is 
the first commercial release of a single-molecule sequencing instru-
ment. It allows one to follow ~1 billion individual molecules as they are 
sequenced over the course of a week—a throughput that is practical for 
human genome sequencing. There have been several technical improve-
ments to the platform since the reported sequencing of a viral genome12, 
including more than a 1,000-fold improvement in parallelism, a new 
generation of sequencing reagents that allows digital measurement of 
homopolymer sequences, and a new software algorithm, IndexDP, for 
performing alignments to the entire human genome.

We used two of the instrument’s 50 flow-cell channels to resequence 
the Staphylococcus aureus genome as a calibration of sequencer perfor-
mance. About nine million reads per channel were uniquely aligned to 
the reference genome (Supplementary Figs. 2 and 3), and from this data 
we were able to determine the raw sequencing error rates. Errors in the 
raw reads were dominated by deletions (2%), followed by insertions 
(1.2%) and substitutions (0.38%). Mapping to the reference genome 
resulted in complete genome coverage and the identification of three 
SNPs (Supplementary Table 3).

We evaluated the performance of the Heliscope for human genome 
sequencing by determining the genome sequence of a male of European 
descent (hereafter referred to as Patient Zero or P0). We generated at 
least 6× human genome coverage of sequence per week-long run. Each 
full run consisted of 50 channels distributed across two flow cells. We 
combined data from four instrument runs, during which 172 of the 
200 channels were loaded with P0 genomic DNA. Sequence data were 
mapped to the NCBI 36 reference human genome (hg18) using the 
open-source aligner IndexDP; 63% of the raw reads were aligned (Fig. 
1a), yielding a total useful coverage of 28×.

IndexDP is designed to perform efficiently in the presence of deletion 
errors by allowing insertions or deletions in the seeds, whereas software 
designed for other short-read technologies (such as ELAND7, MAQ14 
and SHRiMP15) constructs seeds with the assumption that the dominant 

Recent advances in high-throughput DNA sequencing 
technologies have enabled order-of-magnitude improvements 
in both cost and throughput. Here we report the use of single-
molecule methods to sequence an individual human genome. 
We aligned billions of 24- to 70-bp reads (32 bp average) to 
~90% of the National Center for Biotechnology Information 
(NCBI) reference genome, with 28× average coverage. Our 
results were obtained on one sequencing instrument by a 
single operator with four data collection runs. Single-molecule 
sequencing enabled analysis of human genomic information 
without the need for cloning, amplification or ligation. We 
determined ~2.8 million single nucleotide polymorphisms 
(SNPs) with a false-positive rate of less than 1% as validated 
by Sanger sequencing and 99.8% concordance with SNP 
genotyping arrays. We identified 752 regions of copy number 
variation by analyzing coverage depth alone and validated 
27 of these using digital PCR. This milestone should allow 
widespread application of genome sequencing to many aspects 
of genetics and human health, including personal genomics.

There is broad interest in using human genome sequencing to better 
understand human genetic variation and genome-related diseases, 
such as cancer, and ultimately to guide discoveries and decisions about 
the health of individuals. Since the publication of the first rough draft 
consensus human genomes1,2, there have been several reports of indi-
vidual human genome sequences3–9. Even using current next-generation 
technologies, however, sequencing of a human genome has required at 
least 35–40 machine runs with many instruments operating in paral-
lel. Reagent costs are substantial, estimated at $250,000–$500,000 per 
genome (Supplementary Table 1). Here we demonstrate that genome 
science is rapidly advancing to the point where individual instruments 
can achieve throughput that just a few years ago required the facilities 
of large genome centers.

Since the first demonstration of single-molecule sequencing in 2003 
(ref. 10), there has been rapid progress in the field. Published results of 
various forms of single-molecule sequencing11–13 have shown improve-
ments in throughput of about tenfold per year over the last few years, 
and no fundamental limits have yet been reached (Supplementary Fig. 1 
and Supplementary Table 2). Single-molecule sequencing is an attractive 
approach due to its simplicity and the lack of cloning or amplification 
in sample preparation. High densities of unamplified single molecules 
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the Heliscope and a naive prior probability distribution about the distri-
bution of variation in the human genome. UMKA selects the most prob-
able diploid base call for each position in the genome and also returns a 
PHRED-like quality score that is the absolute value of the logarithm of 
the expected error probability at that location. As the naive priors do not 
use information from the NCBI SNP database (dbSNP) or other catalogs 
of human variation, we were able to test the performance of UMKA and 
the quality of the genome assembly by comparing our sequence data to 
independent experimental measurements at sites of known variation 
and have confidence in the extrapolation of the results.

One important application of human genome resequencing is to 
measure the genotype of an individual at sites of known variation. This 
allows one to determine whether the individual is carrying an allele for 
a genetic disorder, to determine ancestry or to profile SNPs for phar-
macogenomic purposes. We analyzed the accuracy of UMKA’s base 
calling in this context by comparing the sequence data to independent 
measurements using the Illumina Human610-Quad SNP BeadArray. 
We used UMKA to call SNPs in the P0 genome and analyzed the results 
as a function of both coverage (Fig. 1c) and quality score (Fig. 1d). The 
base-calling error rate is defined as the fraction of positions that are not 
in concordance with variant calls made using the BeadArray (Online 
Methods). As the quality threshold was varied, we found that UMKA 
was able to call 100% of locations in the comparison pool with 98.3% 
accuracy and 97% of SNPs with 99.0% accuracy. This is slightly better 
than the results of the leukemia tumor genome, which found all high-
quality SNPs in a reference pool with 94% accuracy5, and is similar to 
results obtained for the Asian6,8,9 and Yoruban7 genomes.

Whole-genome data are also used to discover new sources of genetic 
and phenotypic variation. These data are useful in association studies to 
discover disease alleles and also in efforts to understand the fundamental 
distribution of human variation. We analyzed the ability of UMKA to 
discover novel variation by comparing SNPs in the P0 genome to those 
in the dbSNP database (build 129). Previous individual human genome 
sequencing studies have found that dbSNP contains validated entries for 
>70% of the SNPs in an individual genome3–9. Similarly, we found that 
~76% of SNPs in the P0 genome are listed in dbSNP as validated (Fig. 
2a). As annotated SNPs are relatively rare (occurring at the part-per-
thousand level), the chances that a SNP called in the P0 genome will be 
both a false positive and also annotated as validated in dbSNP are very 
low. Therefore, the high proportion of annotated SNPs in P0 suggests a 
low false-positive rate in SNP discovery.

By examining the proportion of P0 SNPs validated in dbSNP as a 
function of quality score, we found that it stays relatively constant over 
a large range of quality scores, and then declines substantially as the 
quality score falls below 2.8 (Fig. 2b). We interpret this as a rapid increase 
in false-positive SNP calling below that threshold. At a quality score 
threshold of 2.8, there are 2,805,471 SNPs. The concordance of this set 
with the BeadArray data is 99.8%, and comparison of the overlap leads 
to an estimated 4.3% false-negative rate (Online Methods). We ran-
domly selected 100 SNPs with a quality score >2.8 and resequenced them 
with Sanger sequencing. All of them agreed with the UMKA prediction, 
thus establishing the false-positive rate as being <1%. The choice of a 
quality-score cutoff is somewhat arbitrary, and, even at a less stringent 
threshold of 1.9, the number of SNPs increases to 3,263,470 and there 
remains substantial agreement in SNP overlap between the P0 genome 
and those of other males of European descent such as Craig Venter1 and 
James Watson4 (Fig. 2c).

Structural variation is an important source of variation in the human 
genome, and it appears to be dominated by copy number variation 
(CNV)6. A few studies have predicted CNV using small datasets of high-
throughput sequencing coverage16,17, but thus far their application to 

errors are substitutions. Although we did not directly compare IndexDP 
to other short-read mappers, it is expected to perform better on data 
generated by the Heliscope Single Molecule Sequencer. Approximately 
90% of the reference genome sequence was covered with uniquely 
mapped reads (2.5 GB out of 2.77 GB). The distribution of coverage 
depth was close to a Poisson distribution (Fig. 1b).

Because IndexDP does not call variant bases and because existing 
variant callers have been designed specifically for other sequencing plat-
forms, we developed an algorithm to perform variant base-calling on 
the P0 genome. This algorithm, called UMKA, uses alignment quality 
scores, accounts for the specific sequencing error profile introduced by 
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Figure 1  P0 genome sequencing metrics. (a) Read length distributions 
for raw reads (blue) and uniquely aligned reads (red) from Helicos single-
molecule sequencing of the genome of Patient Zero (P0). Filtered reads 
tend to be shorter because a larger proportion of the long reads are 
instrument artifacts related to the base addition order. (b) Coverage depth 
for sequence data of the P0 genome, computed over repeat masked regions 
(ENSEMBL, blue) compared to theoretical Poisson limit (red). (c) Error rate 
as a function of sequence coverage depth. Above 30× coverage, sampling 
noise from the limited number of BeadArray results begins to dominate the 
error rate, and error rate measurements are not accurate. Error rates are 
defined as concordance with independent measurement of SNPs using the 
Illumina Human610-Quad SNP BeadArray (see Online Methods for details). 
(d) Quality score (QS) tradeoffs between sensitivity and accuracy. High 
sensitivity is obtained by using a QS threshold of 0, which results in calls 
for all comparison BeadArray locations, with an accuracy of 98.3%. Raising 
the QS threshold to 1 results in 97% of comparison BeadArray locations 
being called, thereby lowering the sensitivity but increasing the accuracy of 
those calls to 99.2%. Numbers next to each data point indicate accuracy 
(percentages) and cutoff score (in brackets).
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asked. For example, when novel SNP discovery is required, it may be use-
ful to accept a lower accuracy in order to sequence more individuals.

More generally, genomes sequenced using short-read technologies 
provide a wealth of knowledge about the geography of the genome and 
how that geography varies between individuals. Currently, only a tiny 
fraction of the data can be interpreted in the context of human traits, 
but in principle such data could be generated for virtually any known 
trait and exploited in personalized medicine. Even the approximate 
measurements of structural variation available today (such as the copy 
number variants described here) are opening new avenues of genomic 
research and changing our understanding of human variation. That 
such measurements can now be performed in virtually any lab using a 
single commercial instrument serves to democratize access to the fruits 
of the genome revolution and may enable rapid and widespread adop-
tion of individual genome sequencing in various scientific and medical 
contexts.

whole human genomes has had limited sensitivity4,18, finding many 
fewer copy number variants than other approaches6. We used a binning 
strategy to determine the density of reads over the genome, from which 
we were able to make direct estimates of CNV at a resolution of 1 kb (Fig. 
3). We did not attempt to detect small indels by this method, although it 
should be possible in principle. CNV detection using this method is, of 
course, only possible in regions of the reference genome where reads can 
be uniquely aligned. We detected 752 regions of CNV totaling 16 MB, 
54% of which were previously annotated in the Database of Genomic 
Variants19. We used digital PCR20 to independently validate 27 CNV 
regions (selected to include 0×, 0.5×, ≥2× copy number variants and 
both novel and previously annotated regions), 25 of which had quantita-
tive agreement with the predicted CNV (Supplementary Table 4).

The individual genome data reported here and previously3–9 represent 
important technological advances but are incomplete approximations 
for various reasons. First, there is both systematic and biological varia-
tion of the genome across tissue types within an individual. Post-mitotic 
cells suffer gradual disregulation of the genome at rates that vary accord-
ing to tissue type21, and cells of the immune system reprogram their 
genomes in specific ways22. Second, genome coverage is not complete, 
and highly repetitive regions are generally not represented. Third, hap-
lotype phasing is difficult to measure and has limited analysis5,6. Fourth, 
structural variation is not determined exhaustively, and there is little 
independent confirmation. In some cases paired-end reads have been 
used to show that individual structural variation may be predominantly 
deletions of various sizes6–9, but verification and estimates of complete-
ness are lacking. Fifth, when SNPs are measured independently, there are 
nonzero false-positive and false-negative rates. None of the published 
individual genomes3–9 has claimed exhaustive SNP determination or 
even 100% concordance with independent SNP genotyping; this is 
due to a trade-off between cost, total coverage and desired accuracy in 
variant base-calling. We expect that such trade-offs will continue to be 
important and will strongly depend on the biological questions being 

Figure 2  SNP discovery in P0. (a) SNP distribution in the P0 genome as a 
function of quality score. Putative SNPs are ‘validated’ or ‘nonvalidated’ if 
they are annotated as such in dbSNP. Putative SNPs not found in dbSNP are 
‘novel’. SNPs with larger quality scores are called with higher confidence. 
A substantial decrease in the proportion of validated SNPs is seen as the 
quality score drops below 2.8, suggesting that 2.8 is a reasonable threshold 
for identifying high quality SNPs. (b) Distribution of high-quality SNP calls 
(quality score >2.8) for the P0 human genome. Validated, nonvalidated 
and novel SNPs are defined as in a. (c) Overlap in SNP locations between 
the genomes of P0, James Watson and Craig Venter (in thousands). In this 
figure the quality-score cutoff was moved to the second plateau in a (QS 
>1.9), increasing the sensitivity and resulting in a total of 3,263,470 SNPs 
in the P0 genome. This is due to a further 389,736 novel SNPs, 18,495 
unvalidated SNPs and 49,768 validated SNPs. The ratio of validated to 
novel SNPs can be used to estimate that this improvement in sensitivity 
comes at a cost of an increased overall false-positive rate (from 1% to 10%). 
Even with this less restrictive cutoff, the SNP proportions shared with Venter 
and Watson remain consistent.
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Figure 3  Copy number variation in the P0 human genome. Blue, signal from 
simulated dataset (simulated reads per 1 kb bin). Magenta, CNV estimate. 
Green, raw signal (actual reads mapped per 1 kb bin). (a) Heterozygous 
deletion. (b) Homozygous deletion. (c) Homozygous duplication.  
(d) Heterozygous deletion.
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METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturebiotechnology/.
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sequence data have been deposited with accession code SRA009216.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METHODS
Genomic library preparation and Illumina BeadArrays. Genomic DNA was 
purified from 2 mls of whole blood from P0 using the DNeasy Kit (Qiagen). 
DNA fragments of ~30 kb were sheared using a Covaris S2 acoustic soni-
cator using conditions recommended by Helicos. The intensity and time 
settings were varied to maximize the fragment yield in the 100- to 500-bp 
range. Sheared DNA fragments were further processed using a Microcon 30 
(Millipore) column to remove small fragments and treated with T4 polynucle-
otide kinase to maximize 3′-OH groups at the ends of the fragments.

Terminal transferase tailing with dATP, 3′-terminal blocking, concentration 
and quantification used protocols provided by Helicos. Approximately 200 
pmoles of dA-tailed molecules were loaded onto each lane of two flow-cells. 
This represents approximately ~25 pg of DNA per lane. Control oligonucleotides 
provided by Helicos were loaded into one lane on each flow-cell for sequenc-
ing run quality control. Minor modifications to the DNA sample preparation 
using size selected fragments of 100–300 bp or using Dynal (Invitrogen) oligo-dT 
magnetic beads to enrich for poly dA–containing molecules did not improve the 
sequence output.

Two 250 ng samples of P0 genomic DNA were processed and analyzed on 
Illumina Human610-Quad SNP Beadchips by the Stanford Functional Genomics 
Facility according to established procedure. Staphylococcus aureus genomic DNA, 
strain USA 300 (size 2.8 Mb, GC 37%) was obtained from ATCC and fragmented 
to an average size of 220 bp using a Covaris instrument prior to sequencing. The 
library and its characterization were provided by Helicos and were sequenced 
at Stanford using two channels of the Heliscope. This yielded ~8.7 M reads per 
channel aligned to S. aureus USA300 reference genome. The entire genome was 
covered, with a minimum coverage of 7× and median coverage of 180×. Positions 
were called using majority vote, and three SNPs were identified. Error rates were 
computed based on actual alignments by dividing number of errors of a given 
type by the total number of aligned bases.

P0 human genome sequencing. Data was obtained from four machine runs (two 
full runs and two runs shared with other libraries), yielding 148 GB of raw sequence 
in 172 channels and an average read length of 33 bp (Supplementary Table 5).

Raw reads were filtered with the Helicos filtersms program14, which removes 
reads with highly repetitive sequences resembling the base addition order (CTAG) 
and applies length filters removing reads shorter than 24 bp and longer than 70. 
Base addition order filter results in a larger fraction of long reads being discarded 
(Fig. 1a). The average length of aligned reads turned out to be 32.

The resulting FASTA files were aligned to human reference build 36 by the 
open-source aligner IndexDP developed by Helicos. Alignment parameters were 
chosen to guarantee 100% sensitivity in alignment for reads that share at least one 
18 mer with no more than 1 mismatch (substitution, insertion, deletion) with 
the reference. A low complexity seed filter is applied by the aligner; only the first 
65,000 positions for each seed are stored in the index; seeds of a given read that 
point to >50 positions in the genome are discarded.

The two best alignments for each read were used. In cases where the read had 
multiple high-quality alignments <200 bp apart, only the best alignment from 
that region was considered

UMKA scoring. The error rate was estimated based on reads that have the 
second-best alignment at least 2 errors away from the best alignment. A sub-
stitution matrix SM was constructed, the elements of which show the probabil-
ity of reading a nucleotide given another nucleotide in the reference sequence 
(Supplementary Table 6).

SM [i,j] = P(B = i | R = j), ex.SM[2.1] = p(C | A)

For each hit, the probability of that hit coming from the position on reference 
it is pointing to was estimated:

P(SEQ | REF) =   P(SEQ[i] | REF[i]) =Π
length

i = 1

Π
length

i = 1

SM[SEQ[i], REF[i]]

For a given read, for all hits the probability of read coming from position 

denoted by hit j is:

P(HIT[j] | SEQ) =

P(SEQ | HIT[j]) ∗                 =
P(HIT[j])

P(SEQ)

P(HIT[j])

P(SEQ | HIT[i]) ∗ P(HIT[i])Σ hit

i=1

P(SEQ | HIT[j]) ∗

By observing that

P(HIT[i]) = 1 / L :

P(HIT[j] | SEQ) =
P(SEQ | HIT[j])

P(SEQ | HIT[i])Σ hit

i=1

UMKA variant calling. Reads that uniquely (second-best alignment is at least 
2 errors away from best) align to genome and have no more than 3 errors were 
used for variant calling.

Five-dimensional (5D) integer vectors were constructed for each position; the 
first four dimensions of the vector represents the number of reads that call a given 
base (A,C,T,G) at the position, with the fifth dimension representing the number 
of reads with gaps at that position. The magnitude of this vector was limited so 
that the sum of the first four values was normalized at 20.

At the next stage of variant calling we estimate the probability that a given 
5D base vector V was obtained as a result of sequencing of a given allelic 
combination P(V|XY) (XY=[AA,AC,AG,AT,CC,CG,CT,GG,GT,TT]).

In the absence of alignment errors the 5D vector can be thought of as the result 
of a random walk in 5D sequence space (ACGT-) where the starting point is the 
true allelic combination and step directions and probability of going in the wrong 
direction are defined by the substitution matrix defined above.

For example, consider a vector V=[5,7,0,1,1] and base combination XY=AA. If 
READ(X) is a stochastic process that is equivalent to sequencing base X, then

 V =               READ(A) Σ 14

i=1

Since these read operations are independent, we can obtain the probability 
distribution resulting from sequencing 14 A bases by taking the convolution of 
14 matrices defining probability distribution of single READ() operation.

len

i=1
P(V | AA) = ⊗ {PD[A]}

where PD[A] is the distribution of outcomes from reading base A as defined by 
the first column of substitution matrix SM.

After this distribution is computed, P(V|AA) is obtained by simply taking 
point V in that distribution.

Calling heterozygotes is slightly different, because one should compute the 
corresponding distribution for each possible combination of heterozygotes (in 
the case above from 14A-0C to 14C-0A), and these combinations should be 
weighted by prior probability of each combination, which is derived from the 
multinomial distribution

(nA + nC)!
P(nA, nC) =                       *2−nA−nC

nA!*nC!

After this process is done for all ten allelic combinations (AA,AC,AG,AT,CC,
CG,CT,GG,GT,TT), the one with highest probability (MX) is chosen and error 
rate is estimated to be

P(V | MX)*P(MX)
Perr = 1−

XY  
P(V | XY)*P(XY)Σ

The base-caller outputs a quality score QS = –log10(Perr) that has the mean-
ing of logarithm base 10 of the probability that variant was mistakenly called. 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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This assumes that sequencing errors are random and are defined by substitution 
matrix SM.

The main benefit of this approach is the ability to get correct probabilistic 
estimates of the correctness of the call that take into account instrument-specific 
substitution and/or deletion rates as well as coverage at the position in question. A 
simulation was performed to validate that within errors of simulation probabilities 
reported by the variant caller are correct. This approach allows us to select subsets 
of data with predefined average accuracy and simplifies the process of planning 
new sequencing experiments based on coverage and/or accuracy required by the 
type of subsequent analysis.

Iterated reference. After the initial alignment and variant calling we revised the 
reference genome and performed a second alignment step to further reduce refer-
ence bias and alignment error. The first alignment step yielded 3 million SNPs with 
a quality score >2.2; for each of these SNPs we constructed a 101-bp sequence that 
consists of the location that differs from reference (with the variant call as the new 
reference) and 50 bp of flanking reference sequence. We then aligned all genomic 
reads to these 3 million sequences (the ‘iterated reference’) and performed variant 
calling with UMKA.

Validation. Analysis was performed on the 2,805,471 highest quality SNPs (QS 
> 2.8).

The P0 genomic sample was also analyzed on the Illumina Human610-Quad 
SNP BeadArray, and the 279,000 highest quality positions (Illumina concordance 
score >90, as reported by BeadArray analysis software, and agreement with a rep-
licate BeadArray measurement) were selected as the independent reference set. A 
false-negative rate of 4.3% was estimated from the fact that only 95.7% of SNPs 
reported by BeadArray reference set were found in the 2.8 M Helicos high-quality 
SNP pool.

One can also estimate the false-positive rate by looking at positions of the 
BeadArray which were called as being identical with the reference. One in 10,000 
of these appeared in the 2.8 M Helicos high-quality SNP pool, which yields a 10% 
false-positive rate estimate under the assumption that the natural SNP occurrence 
rate is 1 per 1,000 bp. This is most likely an overestimate as it also assumes that the 
BeadArray internal error rate is <0.01%. A more reliable estimate of the false-pos-
itive rate was obtained by independent Sanger sequencing of 100 randomly chosen 
SNPs (Genewiz). All of the locations sequenced by Sanger sequencing agreed with 
UMKA variant calls, establishing the false-positive rate as <1%.

SNP annotation. dbSNP build 129 was used for SNP annotation.

Copy number variation. In this study, we binned uniquely aligning reads into 1 
kb bins.

We observed variation exceeding the theoretical prediction, which was caused by 
both alignment errors and is also a natural outcome of substantial nonrandomness 

in the human genome. To compensate for that error and calibrate the aligner, we 
simulated 2× of human genome coverage using the simulator described below and 
repeated the same procedure for genomic reads in terms of CNV analysis.

We have noted a very high correlation (Pearson score 0.72) between the number 
of hits in corresponding bins for genomic reads and simulated reads; thus, the 
majority of variation is caused by alignment artifacts, including regions with no 
sequence (N-regions) and repetitive sequence that gets filtered by the P(REF|HIT) 
> 0.99 requirement.

The following probabilistic approach was used to perform CNV analysis:
Consider a chromosome, and denote H[i] to be the number of genomic reads 

aligning to ith 1 kb bin, and S[i] to be the number of simulated reads aligning to 
the same bin. Thus one would expect H[i] to have close to a Poisson distribution 
with mean being S[i]/median(S)*median(H).

We use that form of the distribution to construct the likelihood estimate of a 
given copy number at C[i], and penalty J for opening region with copy number 
different than current.

L =    poisspdf (H[i] | C[i]∗ S[i]∗ median(H) / median(S))Π
i 

∗ J1−(C[i] == C[i+1])

Optimal copy number assignments can be obtained by maximizing this func-
tion with respect to C[i], which is a well-behaved problem giving optimal solution 
in linear time.

The Database of Genomic Variants was obtained from the UCSC web site, and 
studies represented within it were partitioned into three major groups: SNP arrays, 
CGH and direct sequencing. A CNV region was considered to be validated if it was 
detected by at least two different types of experiment (5.8% of human genome fall 
into this category).

We experimentally validated 27 regions of predicted CNV using Digital PCR 
(BioMark, Fluidigm) (Supplementary Table 4). A highly conserved region of chro-
mosome 1 (gene EIF2C1) was used as the experimental reference channel. Out 
of 27 regions, 25 were called correctly (quantitative agreement of the number of 
copies with the prediction) and 2 were called incorrectly; however, these two were 
in qualitative agreement with the prediction as both approaches showed increased 
copy number relative to the reference gene (ID: 3-60 and 18-20 (Fig. 3c)).

Simulator. Simulated reads were constructed by taking 1 million random uniquely 
aligned reads and creating a set of templates from them, each template recording 
length, type and position of sequencing errors. Then 2× of human coverage was 
obtained by applying these templates to random positions of the human genome, 
such that these reads would capture length distribution and error profile as close 
as possible.

(9)
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