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The polymerase chain reaction (PCR) has found wide application in biochemistry and molecular biology

such as gene expression studies, mutation detection, forensic analysis and pathogen detection.

Increasingly, quantitative real time PCR is used to assess copy numbers from overall yield. In this study

the yield is analyzed as a function of several processes: (1) thermal damage of the template and

polymerase occurring during the denaturing step, (2) competition existing between primers and

templates to either anneal or form dsDNA, (3) polymerase binding to annealed products (primer/

ssDNA) to form ternary complexes and (4) extension of ternary complexes. Explicit expressions are

provided for the efficiency of each process, therefore reaction conditions can be directly linked to the

overall yield. Examples are provided where different processes play the yield-limiting role. The analysis

will give researchers a unique understanding of the factors that control the reaction and will aid in the

interpretation of experimental results.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The polymerase chain reaction (PCR) enzymatically extends
single stranded DNA molecules over a region flanked by a set of
primers. Theoretically, the number of templates should double
after each cycle. In practice, the DNA increases by a factor of (1+Z)
where Z is the cycle efficiency. Thus an efficiency of Z¼1 would
imply a doubling of the DNA concentration. Although the
efficiency could change from cycle to cycle, therefore warranting
the designation Zj to mark the jth cycle, it is customary to report
an overall efficiency (Z) for n cycles. Saiki et al. (1985) related the
overall efficiency (Z) and yield (X) as follows: X¼(1+Z)n and this
relation became the standard way to express the overall
efficiency1 of PCR processes (Keohavong and Thilly, 1989; Li
et al., 1988). A small variation in this relation has been proposed
by Newton and Graham (1997) if the original DNA is genomic
DNA with a length greater than the target DNA length2. It has
been experimentally observed that yields can vary from cycle to
cycle with a general decreasing trend with increasing cycle
ll rights reserved.

: +1 402 472 6989.
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number (Kainz, 2000; Schnell and Mendoza, 1997a, b; Stolovitzky
and Cecchi, 1996). Additional references are listed in Waterfall
et al. (2002). Although the use of an overall efficiency is a
convenient norm to quantify experiments, it provides no
information on cycle-to-cycle changes in efficiency.

The use of X¼(1+Z)n to infer initial concentrations of DNA has
seen application in real-time PCR (rt-PCR) and it has been widely
adopted for use in an array of applications including gene
expression studies, mutation detection, forensic analysis and
pathogen detection with the aim at both clinical diagnostics and
food safety (Champe et al., 2008; Logan et al., 2009; Pfaffl, 2004).
Two main quantification methods are the standard curve method
and the DDCT method. The DDCT method is a relative quantifica-
tion method that assumes 100% efficiency, and uses the
differences in crossover threshold (CT) values between experi-
ment and control reactions to calculate an estimated fold-change
in a target gene. The fold-change is defined as (see Livak and
Schmittgen, 2001):

2DDCT ¼ 2DCT , control�DCT, experiment ð1aÞ

where

DCT ,control ¼ Ctarget
T ,control�Creference

T ,control ð1bÞ

DCT ,experiment ¼ Ctarget
T ,experiment�Creference

T ,experiment ð1cÞ

The standard curve method amplifies serial dilutions of known
concentrations of both the target and reference gene, along with
samples of unknown concentration. The dilution curves are then
used to generate a CT value-concentration curve. When the
unknown samples’ CT values are determined, they are correlated
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to a certain concentration by placement on this curve. The
determined concentrations of the reference and target genes are
then used to calculate fold-changes between experimental and
control reactions.

Pfaffl (2001) proposed a method that combines the standard
curve method and DDCT method. Like the standard curve method
it uses dilution methods to calculate the efficiency for a specific
reaction. This efficiency (Z) is then used in the fold-change
equation used by the DDCT method

ð1þZÞDCT ,control�DCT,experiment ð1dÞ

Liu and Saint (2002a) followed a similar approach but used
fluorescence levels at different points in one curve to calculate the
efficiency, instead of the dilution curves. These calculated
efficiencies are assumed to be constant throughout the reaction
(not varying from cycle to cycle). However, it has been shown that
efficiencies are not constant over all cycles and more advanced
models have been developed to include the efficiency variations
from cycle to cycle (Liu and Saint, 2002b; Platts et al., 2008).
However, these models do not provide expressions for the
efficiencies of different processes that form part of the overall
PCR process and only report a single efficiency per cycle.

Certain models do account for variations in efficiencies of the
different stages (denaturing, annealing and elongation) of every
cycle (Gevertz et al., 2005; Rubin and Levy, 1996). Gevertz et al.
incorporated annealing and elongation efficiencies into the
derivation of a single per-cycle efficiency. The evaluation of the
efficiencies required the numerical solution of a set of initial value
problems for each cycle. Despite being more rigorous, numerical
integration does not lend itself to immediate or convenient
implementation by other users. Rubin and Levy considered the
annealing step, but their work was focused on calculating the
probabilities for mispriming events in analyzing the effects of
different factors on the specificity of PCR.

In this paper we consider four different efficiencies that each
contribute to the overall efficiency. These efficiencies are associated
with the denaturing, annealing, ternary complex formation (i.e.
polymerase binding to template/primer) and elongation steps. In all
cases analytical expressions are provided for the different efficien-
cies, making it easy for other users to apply and connect the
efficiencies with overall yield and PCR conditions.
2. The mathematical model

Each PCR cycle consists of three stages: (1) denaturing of the
DNA, (2) annealing of primers to ssDNA and (3) enzymatic
elongation of the complementary strand by the DNA polymerase.
The start of the cycle is defined as the beginning of the denaturing
step. The overall PCR efficiency of cycle j, Zj, is the product of all of
the individual efficiencies for that cycle, i.e. Zj

d, Zj
a, Zj

E, Zj
e for

denaturing, annealing, polymerase binding and target elongation,
respectively. The denaturing damage efficiency of the polymerase,
Zj

dE, is implicit in Zj
a, Zj

E and Zj
e. See the Nomenclature for detailed

description of notations.

The following assumptions have been made in this analysis:
�
 Symmetry prevails in sense and anti-sense molecules. Thus
there are an equal number of forward and reverse primers and
they anneal to an equal number of sense and anti-sense ssDNA
strands.

�
 Polymerase damage and DNA damage efficiencies are the same

for each PCR cycle.

�
 The annealing temperature is sufficiently below the primer

melting temperature that annealing reactions are irreversible.
�
 No unwanted side reactions such as primer–dimer formation
and mis-priming are considered. Some suggestions are made
in the Conclusions section on how to include the effects of
primer–dimer reactions empirically.

The following sections describe the derivation of expressions
for the efficiency for each PCR step. Before continuing, the
notation for time must be clarified. Each cycle starts with the
denaturing step, but we set t¼0 at the beginning of the annealing
stage (the denaturing step does not involve integration). Anneal-
ing occurs over the span 0rtrta and the elongation stage is
tartrte. The initial number of DNA templates and primers
(i.e. before denaturation in the first cycle) are Dinit and Pinit . The
amount of ssDNA available before annealing in the jth cycle is
denoted by Sj

0 ; the amount available after annealing is denoted by
Sj ðtaÞ ¼ Sj

a and after elongation, Sj ðteÞ ¼ Sj
e . The same is true for all

other variables.

2.1. Efficiency of denaturing

Double-stranded DNA molecules (dsDNA) separate into ssDNA
at the denaturing temperature. DNA is much more susceptible to
hydrolytic attack, oxidation and depurination in the single
stranded form (Cadet et al., 2002; Hsu et al., 2004; Lindahl and
Nyberg, 1972, 1974; Pienaar et al., 2006). Therefore a loss of
template may occur in this step. An efficiency of denaturing Zdr1
is defined; such that at the end of the denaturing step, the number
of undamaged single stranded DNA that is available for annealing
is

Sj
0 ¼ ZdDj�1

e ð2aÞ

Denaturing efficiency is not an indication of the extent of
strand separation, but of thermal damage to DNA. The denaturing
temperature is assumed to be high enough to ensure that all the
template strands separate. Since Dj�1

e are the number of dsDNA
molecules available after the elongation phase at the end of the
(j�1)th cycle, there is a one-to-one relationship between Dj�1

e

and Sj
0 .

The polymerase may also incur thermal damage at the
denaturing temperature. If the initial amount of polymerase is
Einit , then E1

0 ¼ ZdEEinit is the amount that is still active at the end
of the first denaturing stage. These denaturation damage
efficiencies, Zd and ZdE, are assumed constant from cycle to cycle,
since they depend primarily on temperature and the exposure
time (denaturing period). Thus, at the end of the jth cycle, the
polymerase amount is

Ej
0 ¼ ZdEEj�1

0 ¼ ðZdEÞ
jEinit ð2bÞ

For example, even a 1% loss per cycle, leads to a 33% reduction
in active polymerases after 40 cycles.

2.2. Annealing model

The efficiency of the annealing stage depends on competitive
binding: 50–30 ssDNA, Sj

0 , could either bind to complementary
30–50 ssDNA strands to form dsDNA or to their primers, Pj

0 , to form
binary complexes. The dsDNA molecules are stable at the
annealing temperature and, as mentioned in the list of assump-
tions, the primer/template products are also considered stable;
making an analytical treatise possible. The ratio of templates to
primers at the start of the annealing stage in the jth cycle is
defined as

gj ¼ Sj
0=Pj

0 : ð3Þ



Fig. 1. Schematic diagram of annealing phase reactions showing the formation of

double-stranded DNA as well as binary- and ternary-complexes.
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The ratio is small during earlier cycles (gj{10�2), but the
primers are consumed and the templates increase, therefore gj

increases with cycle number.
Neglecting non-specific binding or primer–dimer formation,

three reactions remain for consideration: (1) two ssDNA mole-
cules Sj can bind with rate kS to form dsDNA Dj , (2) a primer can
anneal to a ssDNA molecule with rate kP to form a binary complex,
Bj , and (3) a polymerase can anneal to a binary molecule with rate
kC to form a ternary complex, Cj . Rate constants depend on primer
sequences and PCR temperatures, and these constants can be
estimated (Mamedov et al., 2008). The annealing reactions are
described by the following set of equations (see Fig. 1 for a
diagram of the reactions and components):

dSj

dt
¼�kSSj Sj�kPPj Sj ð4aÞ

dPj

dt
¼�kPPj Sj ð4bÞ

dDj

dt
¼ kSSj Sj ð4cÞ

dBj

dt
¼ kpPj Sj�kcBj Ej ð4dÞ

dCj

dt
¼ kCBj Ej ð4eÞ

dEj

dt
¼�kCBj Ej ð4fÞ

Converting to dimensionless form simplifies the analysis. All
DNA amounts are scaled by the initial amount of ssDNA at the

start of the annealing step of the jth cycle, Sj
0 . The dimensionless

variables are given by Sj ¼ Sj=Sj
0 , Pj ¼ Pj=Sj

0 , Dj ¼Dj=Sj
0 , etc. Initial

values for each cycle in the dimensionless form are:

Sj
0 ¼ Sj

0=Sj
0 ¼ 1, Pj

0 ¼ Pj
0=Sj

0 ¼ 1=gj, Ej
0 ¼ Ej

0=Sj
0 and Dj

0 ¼ Bj
0 ¼ Cj

0 ¼ 0:

Time is scaled by the primer/template binding rate constant and

the initial DNA quantity, t¼ tkPSj
0 . (If kP has units 1/(mM s), then

Sj
0 must be expressed in mM.)

The dimensionless annealing equations are

dSj

dt ¼�bðS
jÞ

2
�PjSj ð5aÞ

dPj

dt ¼�PjSj ð5bÞ

dDj

dt ¼ bðSjÞ
2

ð5cÞ

dBj

dt
¼ PjSj�aBjEj ð5dÞ

dCj

dt ¼ aBjEj ð5eÞ
dEj

dt ¼�aBjEj ð5fÞ

The parameters a¼ kC=kP and b¼ kS=kP are ratios of the
reaction rate constants. The symmetry assumption allows the first
term on the right-hand side of Eq. (5a) to be quadratic in Sj, since
it is not necessary to distinguish between forward and reverse
template concentrations.

Species balance equations for the primers and enzymes are
given by

Pj
0 ¼ 1=gj ¼ PjþBjþCj ð6aÞ

Ej
0 ¼ EjþCj ð6bÞ

Analytical approximations can be found for Eqs. (5a–5e). A full
derivation of the approximations may be found in the Appendix.
The approximations are given by

SjðtÞffi PjðtÞ
b�1

PjðtÞ
dj

� �b�1

�1

" #
ð7aÞ

PjðtÞffiðgjÞ
�1
½ðgjdj
Þ
1�b
ð1�e�d

jtÞþe�d
jt�1=1�b ð7bÞ

BjðtÞffi1=gj�PjðtÞ�CjðtÞ ð7cÞ

CjðtÞffiEj
0�EjðtÞ ð7dÞ

EjðtÞffi
Ej

0ð1�g
jðPjðtÞþEj

0ÞÞ

ð1�gjPjðtÞÞexp
að1�gjðPjðtÞþEj

0
ÞÞ

gj t
� �

�gjEj
0

ð7eÞ

The parameter dj is defined as dj
¼Pj(t-N)¼(gj)�1[gj(b�1)+

1]1/1�b. Eqs. (7a–7e) hold for ba1, and the approximation
becomes better for larger values of b, which represent more
realistic cases.

The accuracy of the approximations was estimated by
comparing it to numerical solutions of the model above.
Numerical solutions were calculated with GNU Octave v. 3.2.3
(Eaton, 2010), using the Dormand–Prince method. It was found
that the approximations are extremely accurate, as illustrated in
Fig. 2. The difference between the approximations and the
numerical solutions was calculated for Sj(t), Bj(t) and Cj(t). For
ao1 and b¼1+10�6, it was found that this difference is less than
0.1 for g¼0.5 and is less than 0.05 for go0.1. The error increases
with a and is greatest when b-1. The maximum error was 0.16
when a45, b¼1+10�6and g¼0.5. However, in all cases, the error
tends to zero as t-0 and t-ta. Thus, for typical PCR conditions,
the error is less than 10% during the initial phase of the reaction
and negligible towards the end.
2.3. Efficiency of primer annealing

The efficiency of primer annealing is defined as

Zj
a ¼

ssDNA bound to primers at ta

total available ssDNA
¼ Pj

0�PjðtaÞ ¼ BjðtaÞþCjðtaÞ

ð8Þ

The right-hand side of Eq. (8) is obtained by rearranging
Eq. (6a). The annealing efficiency is the sum of the dimensionless
binary and ternary complexes at the end of the annealing period
t¼ta as a fraction of total available ssDNA. An explicit



Fig. 2. The analytical approximation (solid line) as well as numerical solutions (markers) for different parameter values. The top row shows the first two seconds of the

reaction, while the bottom row shows the first ten seconds. (A1 and A2): a¼0.03, b¼1+10�6 and g¼10�3. These are the expected values for most PCR experiments. (B1

and B2): a¼0.03, b¼1+10�6 and g¼0.5. The higher value of g is characteristic of the last and second to last PCR cycles. (C1 and C2): a¼1, b¼5 and g¼10�3. This

simulation shows that the approximations hold for different values of a and b.
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expression for annealing efficiency is obtained by substituting
Pj(ta)EPj(t-N)¼dj and Pj

0 ¼ 1=gj, into Eq. (8)

Zj
a ¼

1

gj
�dj

ð9Þ

2.4. Efficiency of polymerase binding

The efficiency of polymerase binding is defined as

Zj
E ¼

Total ternary complexes formed at the end of elongation

Total binary and ternary complexes formed

¼
CjðteÞ

BjðteÞþCjðteÞ
ð10Þ

where te is the dimensionless time at the end of the elongation
period. To solve for Cj(te) in Eq. (10), we use Eqs. (6a,6b) (which
are valid for all time), to write Eq. (5d) as

dBj

dt
¼�aBjEj ¼�aBjðEj

0þBj�Zj
aÞ, for tZta ð11Þ

Note that the term PjSj is not present, since Sj(t)E0 for tZta.
Eqs. (11,5e) can be solved analytically for the initial data
BjðtaÞ ¼ Bj

a;C
jðtaÞ ¼ Cj

a ¼ Z
j
a�Bj

a. The parameter a¼ kC=kp is as-
sumed to only change slightly for the elongation conditions, since
it depends on the difference in activation energies of the two rate
constants in the quotient and the difference between the
annealing and elongation temperatures. The analytical solutions
to Eqs. (11,5e), valid for tZta, are

BjðtÞ ¼
ðEj

0�Z
j
aÞB

j
ae�aðE

j
0
�Zj

aÞðt�taÞ

ðEj
0�Z

j
aþBj

aÞ�Bj
ae�aðE

j
0
�Zj

aÞðt�taÞ
ð12aÞ

CjðtÞ ¼
ðEj

0�Z
j
aþBj

aÞZ
j
a�Bj

aEj
0e�aðE

j
0
�Zj

aÞðt�taÞ

ðEj
0�Z

j
aþBj

aÞ�Bj
ae�aðE

j
0
�Zj

aÞðt�taÞ
ð12bÞ

Results (12a,12b) are used in Eq. (10) to obtain an explicit form
for the efficiency of polymerase binding

Zj
E ¼
ðEj

0�Z
j
aþBj

aÞþðB
j
a=Z

j
aÞE

j
0e�aðE

j
0
�Zj

aÞte

ðEj
0�Z

j
aþBj

aÞ�Bj
ae�aðE

j
0
�Zj

aÞte

ð13Þ

2.5. Efficiency of elongation

The number of ternary complexes that extend to full-length
copies depends on the elongation time. Not all the ternary
complexes form at the same time. Those that form early in the
elongation step have a better chance to extend fully, compared to
complexes that form later in the elongation stage. The efficiency
of elongation is framed within this limitation.



Fig. 3. The annealing efficiency (Za) as a function of the template:primer ratio (g).
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Denote the average extension rate at the elongation tempera-
ture as V nucleotides per second. If the length that the primer
must extend is lext, then the minimum elongation time that is
needed to fully extend a ternary complex is Dtmin ¼ lext=V .
Therefore a cut-off time (tc) exists and ternary complexes that
form after the cut-off will not extend completely. The dimension-
less form is tc ¼ te�DtminkpSj

0Zta.
The efficiency of elongation is defined as the ratio of the

ternary complexes that extend fully, divided by all ternary
complexes that have formed.

Zj
e ¼

CjðtcÞ

CjðteÞ
ð14Þ

The solution (12b) is substituted in Eq. (14) to arrive at an
expression for Zj

e

Zj
e ¼
ðEj

0�Cj
aÞZ

j
aeaðE

j
0
�Zj

aÞðtc�taÞ�ðZj
a�Cj

aÞE
j
0

Cj
a�Z

j
aþðE

j
0�Cj

aÞe
aðEj

0
�Zj

aÞðtc�taÞ

" #

�
Cj

a�Z
j
aþðE

j
0�Cj

aÞe
aðEj

0
�Zj

aÞðte�taÞ

Ej
0�Cj

a

� �
Zj

aeaðE
j
0
�Zj

aÞðte�taÞ�ðZj
a�Cj

aÞE
j
0

2
4

3
5 ð15Þ

Remark. Extension begins as soon as a polymerase has bound to
a binary complex. Since the ternary complexes may form any time
during the elongation stage, a distribution of product lengths may
result. For the sake of simplicity, these incomplete products are
not carried over to the next cycle in this model. This will have a
negligible effect on the accuracy of the model as the partially
elongated ssDNA will act similarly to a primer in the annealing
phase of the next cycle.

3. Results and discussion

Four efficiencies have been defined, given by Eqs. (2a,2b,9,13
and 15). The overall efficiency for the jth cycle is the product of
the four individual efficiencies

Zj ¼ Zj
dZ

j
aZ

j
EZ

j
e, ð16aÞ

and it takes on the form

Zj ¼ Zd

ðEj
0�Cj

aÞZ
j
aeaðE

j
0
�Zj

aÞðtc�taÞ�ðZj
a�Cj

aÞE
j
0

Cj
a�Z

j
aþðE

j
0�Cj

aÞe
aðEj

0
�Zj

aÞðtc�taÞ

" #
ð16bÞ

The simplicity of Eq. (16b) is somewhat misleading. We list the
key PCR parameters and where they appear in Eq. (16b).
�
 Starting composition. The starting polymerase and primer
concentrations are scaled with respect to S1

0. The templates for
the next cycle are obtained from the values at the previous
cycle: Sjþ1

0 ¼ Sj
0þZ

jSj
0 and the updated template value is used

to find the dimensionless polymerase and primer concentra-
tions at the start of the j+1th cycle. Of course, one must also
account for primer consumption each cycle, Pjþ1

0 ¼ Pj
0�Z

jSj
0.
�
 The annealing time is implicitly present in Cj
a (cf. Eqs. (7c,7d)).

The term tc depends on the elongation time, elongation speed
and template length.

�
 The kinetic rate constants appear in dimensionless form as b

and a. Temperature settings affect the rate constants. For
example, increase in the annealing temperature would reduce
binary complex formation.

The annealing efficiency, Zj
a, depends only on b and gj and it

decreases from cycle to cycle due to primer consumption
(Pjþ1

0 oPj
0) and template formation (Sjþ1

0 4Sj
0). In Fig. 3 the

efficiency of annealing is plotted as a function of gj. For a small gj

(i.e. case of large excess primers), the annealing efficiency is
practically 100%, regardless of the b values. If gj410�3, then the
efficiency starts to drop. The efficiency is more sensitive to larger
values of b, because the reaction to form dsDNA becomes more
competitive (cf. Eq. (5c)). The limits of Zj

a are proper; lim
gj-0
ðZj

aÞ ¼ 1
and lim

gj-1
ðZj

aÞ ¼ 0.
The parameter a determines the rate of ternary complex

formation. The polymerase binding efficiency, Zj
E, will increase

with increasing a. However, it is expected that a is small
(Mamedov et al., 2008). The expression for the overall efficiency
(Eq. (16b)) becomes much simpler if no ternary complexes have
formed at the end of the annealing stage (i.e. Cj

a ¼ 0 in
Eq. (16b))—this is a good approximation if a{1.

To illustrate the usefulness of this analysis, we will investigate
the roles of different efficiencies on the overall efficiency for
different PCR conditions. Three different polymerase concentra-
tions will be used and for each choice the elongation period will
be varied from Dte¼5 s to Dte¼10 s and Dte¼20 s; where
Dte¼te�ta. The parameters that do not change are: Dinit¼1�105

copies, b¼5, kC¼15 (mM s)�1 (Mamedov et al., 2008), Zd¼1,
ZdE¼0.99, lext¼400 nt, Pinit¼6�1012 copies—i.e. 10 pmol, reac-
tion volume is 25 mL (Griep et al., 2006) and the maximum cycle
number is 40. We use the simple form of the overall efficiency,
i.e. Cj

a ¼ 0

Zj ¼ Zd Zj
a�

Ej
0�Z

j
aSj

0

� �
Zj

ae� Ej
0
�Zj

aSj
0

� �
kC ðtc�taÞ

Ej
0�Z

j
aSj

0 e� Ej
0
�Zj

aSj
0

� �
kC ðtc�taÞ

2
64

3
75 ð17Þ

Remarks. The variables in Eq. (17) are written in dimensional
form to allow direct substitution of the values listed above. The
value of kP is not given since kP cancels out in the product of
dimensionless time and a in Eq. (16b), and only kC is needed for
calculation. In the discussion that follows, we refer to the smallest
of Za, ZE or Ze as the controlling efficiency.

Case 1: Einit ¼ 12:6� 1011 copies
Results for case 1 are presented in Fig. 4. In Fig. 4A the different

efficiencies are plotted as a function of cycle number. The
elongation time is Dte¼20 s. The polymerase is in excess and
the system is under the control of the annealing efficiency and it
tracks the overall efficiency closely. The overall efficiency drops
below 90% after cycle 22. The efficiency is less than 10% after 30
cycles and it is expected that increase in the yield will be
exiguous. If the overall yield is calculated using Di ðZþ1Þn ¼Dn

0 ,
the average value over the first 30 cycles is 81%, but over the 40
cycles it drops to 56%.

It is expected that the elongation efficiency will lower if the
elongation time is shorter. In Fig. 4B, the efficiencies are shown for
the case Dte¼10 s (all the other parameters as for Fig. 4A). The
overall efficiency still tracks the annealing efficiency, however a



Fig. 4. Efficiencies as a function of cycle number. Dinit¼105 copies, Einit¼12.6�1011 copies, elongation period is 20 s (A), 10 s (B) and 5 s (C). (D) Normalized DNA product

as a function of cycle number. Dinit¼105 copies, Einit¼12.6�1011 copies, at elongation periods 20, 10 and 5 s. The curves had the same maximum before normalization.
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slight decrease is observed in the polymerase and extension
efficiencies. There is a brief period between cycle 26 and cycle 28
where the polymerase efficiency drops below 90%. The extension
efficiency also lowers during this period, but only down to 96%. In
Fig. 4C the results are shown for an even shorter elongation time,
Dte¼5 s. Here, the system is under extension control through
cycle 24 and under annealing control for the remaining cycles.
The localized drop in polymerase efficiency is still present, but the
trough spans cycles 26–33 and it is deeper. There is even a brief
period where the polymerase efficiency is less than the extension
efficiency. Whereas Zj

a is a monotonic decreasing function of cycle
number, the polymerase and extension efficiencies exhibit local
minima.

Normalized predicted PCR product amounts for the 3 elongation
times (20, 10 and 5 s in Fig. 4A–C, respectively) are shown in Fig. 4D.
In all three cases the same number of initial copies is amplified to
the same final amount. The effect of shorter extension times is
to slow template amplification down; more cycles are required to
reach the plateau. The mid-points of the curves shift to higher cycle
numbers for shorter elongation times, although the copy number
remains the same. In Fig. 4D the two longer extension times give
mid-points just beyond cycle 26, but for the shortest time Dte¼5 s,
the mid-point is at cycle position 28.5.
Case 2: Ei¼6.3�1011 copies
Results for case 2 are shown in Fig. 5. The initial polymerase

concentration is halved with respect to the amount used in case 1.
Results for the three extension times (20, 10 and 5 s) are shown in
Fig. 5A–C, respectively.

In Fig. 5A the results are shown for Dte¼20 s. The reduced
polymerase concentration causes a pronounced drop in Zj

E

between cycles 24 and 34 (compared to Fig. 4A). During this
period the number of binary complexes exceeds the number of
polymerase molecules, but after cycle 28 this deficit becomes less
and the polymerase efficiency begins to increase again—the
explanation is a reduction in the number of binary complexes at
later cycles, due to increased formation of dsDNA during the
annealing stage. Compared to the results of case 1, the overall
efficiency drops off sooner, and 50% overall efficiency is reached
at cycle value 24.5. The extension efficiency remains near unity
for the whole PCR reaction, with a subtle double minimum
observable.

The results for Dte¼10 s are shown in Fig. 5B. The width of the
Zj

E trough is wider, compared to Fig. 5A, but the results are
qualitatively similar. Also, the reduction in extension time from
20 to 10 s enhances the double minima in Zj

e; compare Zj
ein Fig. 5A

with B.



Fig. 5. Efficiencies as functions of cycle number. Dinit¼105 copies, Einit¼6.3�1011 copies, elongation period is 20 s (A), 10 s (B) and 5 s (C). (D) Normalized DNA product as a

function of cycle number. Dinit¼105 copies, Einit¼6.3�1011 copies, at elongation periods 20, 10 and 5 s.
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When the extension time is set to Dte¼5 s (Fig. 5C), the system
is under extension control for the first 30 cycles; under
polymerase control until cycle 36 and under annealing control
for the last four cycles. Here is an example where three different
efficiencies controlled the system over the course of 40 cycles.
One mechanism overtakes another as being limiting and the
results underscore the nonlinear character of the PCR process.

The plots of normalized DNA product vs. cycle number are
shown in Fig. 5D. The products have been scaled with the same
maximum as in Fig. 4D. The mid-points for Dte¼20 s, 10 s are
close, at cycle values 27.8 and 28.5, respectively. These values
differ from the results for similar extension times in case 1 earlier,
and lie close to the midpoint for Dte¼5 s (of case 1). The results
show that the midpoints shift if the polymerase concentration
changes. The product curve does not reach saturation in the case
of Dte¼5 s (solid curve, Fig. 5D). If more cycles are added, then the
curve continues to increase linearly until it finally plateaus when
the primers are depleted. Note that all three curves have different
slopes in the linear region. The slope decreases as the extension
time is shortened, thus lower extension efficiencies lead to a
slow-down of the process.

An important conclusion can be drawn at this stage. As long as
the system is not under annealing control, the DNA product will
not plateau, or in terms of a product vs. cycle number plot, the
product will continue to increase at a near constant rate.

Case 3: Einit ¼2.1�1011 copies
Results for case 3 are shown in Fig. 6. In this case the polymerase

concentration is reduced by a factor of 3 with respect to case 2. The
results for the three extension times are shown in Fig. 6A–C.

For Dte¼20 s the system remains under polymerase control
over all 40 cycles. Both Zj

E and Zj
a are monotonically decreasing

functions and Zj
e exhibits a single minimum.

Results for Dte¼10 s are shown in Fig. 6B. The extension
efficiency is lower in Fig. 6B compared to Fig. 6A, hence the overall
efficiency is lower. However, the system remains under poly-
merase control. The primers are not depleted at the end of 40
cycles (Zj

a is still relatively high) and amplification will continue
beyond this point, albeit very slowly.

Fig. 6C presents an example of very poor overall efficiency,
where Dte¼5 s. For the first 25 cycles the system is controlled by
extension, and then by the polymerase concentration. The
annealing efficiency remains near unity. The total product
formation will be much less than in previous cases.

The final example is a simulation of a serial dilution study. The
conditions are the same as for case 1 and the extension time



Fig. 6. Efficiencies as functions of cycle number. Dinit¼105 copies, Einit¼2.1�1011 copies, elongation period is 20 s (A), 10 s (B) and 5 s (C). (D) Serial dilution

study—normalized DNA product as a function of cycle number. Dinit¼102, 103, 104 and 105 (as indicated in the legend), Einit¼12.6�1011 copies, tE¼20 s.
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remains constant at Dte¼20 s. The initial template concentration
varies from 102 copies to 105 copies. The results are shown in
Fig. 6D. The results are as expected for a quantitative PCR
experiment. Consecutive midpoints differ by 3.3 cycle values and
the slopes are parallel.
4. Conclusions
1.
 The overall efficiency depends linearly on the denaturing
efficiency.
2.
 If the polymerase is in excess compared to the binary complex
and the extension time is long, then the overall efficiency
depends linearly on the annealing efficiency, i.e. Zj ¼ ZdZ

j
a. In

this case the polymerase binding and elongation are not rate-
limiting.
3.
 If the polymerase is in excess compared to the binary complex
but the extension time is short, then the overall efficiency is

Zj ¼ ZdZ
j
a 1�e� Ej

0
�ZaSj

0

� �
kC ðtc�taÞ

� 	
: The system is under control of

the extension time and the annealing efficiency.
4.
 If the binary complex is in excess compared to the polymerase,

then Zj ¼ Zd
Ej

0

Sj
0

. The system is now under the control of the

polymerase concentration.

5.
 The efficiency changes from cycle to cycle and different mechan-

isms may control the system over the course of 30 or 40 cycles.

6.
 The annealing efficiency is a monotonic decreasing function of

cycle number, but Zj
E and Zj

e are not. A particularly interesting
situation arises if the polymerase concentration becomes rate-
limiting. Since new templates still form and gj continues to
increase with each cycle, the annealing efficiency decreases. As
a result the binary complexes begin to decrease at some point
and the polymerase concentration is no longer deficient—then
a notable increase in Zj

E occurs.

Though some observations from this model (such as the shift in
the curves due to shortened elongation time or reduced
polymerase) can be intuitive for scientist familiar with PCR, this
model uncovers the underlying efficiencies that are affected by
these changes. The model also shows that the limiting step in
every cycle changes as the reaction progresses. Experimental
validation of the theoretical results is outside the scope of



Fig. A1. Three separate bands are seen above, corresponding to g¼0.1, 0.3 and 0.5.

In each band, the value of R(t,g,b) increases with b, the top curve in each band

corresponding to b¼1+10�6. The maximum ratio achieved is less than 1.1, with

b¼1+10�6 and g¼0.5.
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this work, but is under way and will be presented in a future
publication.

Two other factors may affect the average rate of extension, V.
Firstly, the dinucleotide triphosphate (dNTP) concentration may
become depleted, in which case the extension rate becomes
dependent on the rate of diffusion of dNTPs to the ternary complexes.
Secondly, pyrophosphates (PPi) are produced upon insertion of dNTPS
and their concentration builds up in the system. It is possible that a
point may be reached where the pyrophosphorolysis reaction could
effectively compete with dNTP insertion resulting in slow (if any) net
extension. These factors can be accounted for by making V dependent
on PPi and dNTP transport. Secondly, primer–dimer interactions are
often problematic and one will have to resort to numerical solutions
to account for the effect. The best alternative, if one wishes to use the
analytical results presented here, is to assign a loss factor for primers
at each cycle, similar to the polymerase and template losses due to
thermal damage.

Appendix

This section describes the derivation of the annealing model
approximations in detail. For simplicity, the superscript j has been
dropped, and the following equations all apply to a single cycle.

A.1. Calculating P(t) and S(t)

First, the differential equations describing the primer and
ssDNA reactions are given by (A1) and (A2)

dP

dt ¼�PS ðA1Þ

dS

dt
¼�PS�bS2 ðA2Þ

Since P(t)a0 8t, we can divide (A2) by (A1) to get (A3)

‘
dS

dP
¼ 1þb

S

P
ðA3Þ

This can be solved using an integrating factor to obtain (A4)

‘
d

dP
ðP�bSÞ ¼ P�b

‘S¼ Pb P1�b

1�b
�

P0
1�b

1�b
þP�b0 S0

 !
ðA4Þ

If we define d¼ ðgðb�1Þþ1Þ1=1�b

g and use the fact that P0 ¼
1
g and

S0¼1, then (A4) becomes (A5)

‘S¼ P

P
d


 �b�1
�1

� �
b�1

ðA5Þ

Substituting (A5) into (A1) to obtain (A6)

dP

dt
¼�PS¼�ðPÞP

P
d


 �b�1
�1

� �
b�1

��aP

P
d


 �b�1
�1

� �
b�1

ðA6Þ

Here, we approximate P2 by aP, where a is some constant. We
will choose the value of a later. This approximation makes it
possible to solve the differential equation to obtain (A7). Using
separation of variables and partial fractions

ZP

P0

dP

P P
d


 �b�1
�1

� � ¼ Z
P

P0

P
d


 �b�2
dP

1
d

P
d


 �b�1
�1

� �� Z
P

P0

dP

P

¼
1

b�1

� �
ln

P
d


 �b�1
�1

P0

d

� �b�1
�1

0
B@

1
CA�ln

P

P0

� �
¼�

at
b�1
After some manipulation and using P0¼1/g, we obtain (A7)

‘PðtÞ ¼ g�1½ðgdÞ1�bð1�e�atÞþe�at�1=1�b ðA7Þ

Notice that, P(0)¼1/g and limt-1P¼ d. Since P is monotoni-
cally decreasing, we have 1

g 4P4d. Let us reinvestigate Eq. (A6). If
we let a¼P(0)¼1/g or a¼ limt-1P¼ d then

�
P

g

� � P
d


 �b�1
�1

� �
b�1

o�ðP2Þ

P
d


 �b�1
�1

� �
b�1

o�ðdPÞ

P
d


 �b�1
�1

� �
b�1

This implies that the approximation with a¼1/g will decrease
at a faster rate than the real situation, and the approximation with
a¼d will decrease slowly. Hence, letting a¼1/g provides a lower
bound (Pl) on P(t) and a¼d provides an upper bound (Pu) on P(t).
Since one of the goals is the optimization of the annealing time,
using the upper bound on P(t) will provide a conservative
estimate. Hence, we choose a¼d to get (A8)

‘PðtÞ ¼ g�1 ðgdÞ1�bð1�e�dtÞþe�dt
h i 1

1�b
ðA8Þ

The value of S can now be calculated using (A5). To determine
the accuracy of this approximation, we calculate the ratio of the
upper and lower bounds

Rðt,g,bÞ ¼
PuðtÞ
PlðtÞ

¼
ðgdÞ1�bð1�e�dtÞþe�dt

ðgdÞ1�bð1�e�t=gÞþe�t=g

" #1=1�b

The value of the ratio R(t,g,b) is plotted for various values of g
and b on 0oto4 on Fig. A1. The higher the ratio, the greater the
difference between the upper and lower bounds and the greater
the error in the approximation.

From Fig. A1, it is clear that the ratio attains a maximum
somewhere on 0oto4. The error increases as b-1 and as g-1.
The maximum error attained was less than 1.1 with b¼1+10�6

and g¼0.5. This means that, even in the final cycle where the
approximation is expected to be poorest, the error is less than
10%. More importantly, however, the ratio decreases to 1 as
t-N, showing that the approximation error tends to 0.

A.2. Calculating B(t), C(t) and E(t)

We have the following kinetic equation for E (A9):

dE

dt ¼�aBE ðA9Þ

But the species balances can be rearranged as follows, to
obtain (A10):

E0 ¼ EþC-C ¼ E0�E
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P0 ¼ PþBþC-B¼ P0�P�C-B¼ P0�P�E0þE

‘
dE

dt ¼�aEðP0�P�E0Þ ðA10Þ

We can again separate and use partial fractions to obtain
(A11)

‘
ZE

E0

1

E
�

1

P0�P�E0þE

� �
dE¼�a

Zt
0

ðP0�P�E0Þdt ðA11Þ

One cannot integrate P with respect to E as this is a non-
homogenous term in the differential equation. Furthermore, the
integral

Rt
0

Pdt is a very complex function. Since the value of P0�P

remains nearly constant for g{1, we assume that
P0�PEconstant. Then (A12)

‘ln
E

E0

� �
�ln

EþP0�P�E0

P0�P

� �
¼ ln

EðP0�PÞ

E0 EþP0�P�E0ð Þ

� �
¼�aðP0�P�E0Þt

ðA12Þ

After some rearrangement and recalling that P0¼1/g, we find
(A13)

‘EðtÞ ¼
E0 1�gðPðtÞþE0Þ

 �

1�gPðtÞ

 �

eað1�gðPðtÞþE0ÞÞt=g�gE0
ðA13Þ

Finally, BðtÞ ¼ 1
g�PðtÞ�E0þEðtÞ and C(t)¼E0�E(t)

Nomenclature

B Number of binary complexes (primer-ssDNA template)
C Number of ternary complexes (primer-ssDNA template-

polymerase)
D Number of dsDNA molecules
E Number of polymerase molecules
kC Reaction rate constant for a polymerase binding to a

binary complex to form a ternary complex
kP Reaction rate constant for primer–template annealing to

form a binary complex
kS Reaction rate constant for template–template annealing

to form dsDNA
lext The length that the primer must extend to become

another template
n Number of PCR cycles
P Number of forward/reverse primer molecules
S Number of full length top/bottom ssDNA template

molecules
t Dimensional time
Dtmin Minimum elongation time
Dte Elongation hold time
V Average extension rate of the polymerase at the

elongation temperature
X PCR yield for n cycles

Use of overbar indicates dimensional variable

a Ratio of reaction rate constants, kC=kP

b Ratio of reaction rate constants, kS=kP

d Minimum amount of remaining primer after the anneal-
ing period

g Ratio of template to primers
Z Efficiency
t Dimensionless time

Superscripts

j Cycle number
Subscripts

0 Start of annealing period
a Annealing (end of period when used in reference to

time)
c Cut-off time
d Thermal damage to DNA
dE Thermal damage to polymerase
e Elongation (end of period when used in reference to

time)
E Polymerase binding
init Initial, i.e. before denaturation in the first cycle
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